Safety Precautions

Thank you for purchasing Shihlin Electric product. This user manual introduces how to install, wiring, inspect and operate Shihlin Servo Drive and Motor. Please read related items in this user manual prior to installation and operation for safety.

■ There are 2 safety notification levels in this user manual: Danger and Caution.

It indicates that it may cause severe or fatal injuries if the instructions are not followed.

It indicates that it may cause moderate injury or malfunction of the product if the instructions are not followed.

Besides, for those items remark as CAUTION, it may cause bad consequences in some cases, please follow the instructions to operate due to its importance.

Below symbols indicate the items should be followed.

It indicates the FORBIDDEN items.

It Indicates the MANDATORY Items.

In this user manual, NOTE indicates the cautions which may not cause malfunction of the product, but need pay attention.

Please read this manual carefully and keep it properly to make sure the user can reach it freely.

Safety Instruction

1. Electric Shock Prevention

Do NOT place the servo drive, motor or external regenerative resistor on or nearby inflammable objects, otherwise, fire disaster may be caused.

Turn off the servo drive power when problem occurs, otherwise, the high current flow may cause fire disaster.

Turn off the power by regenerative abnormal signal when regenerative resistor is used. If there is a regenerative brake transistor fault, which may make the regenerative resistor overheat and may cause fire disaster.

Never let below items go inside of the servo drive or motor. Including: flammable matter, such as oil, fat, etc. And conductive matter: such as screw, metal parts, etc.

Densure the servo drive power supply is connected with a non-fuse breaker.

3. Injury Prevention

ODo NOT apply voltages other than those specified in the specifications to each terminal, otherwise, a burst or damage may occur.

ODo NOT make mistake when wiring to the terminal. Otherwise, a burst or damage may occur.

 \bigcirc Do NOT make mistake on the(+ -)polarity. otherwise, a burst or damage may occur.

♦ Oo NOT touch the heat sink, regenerative resistor of the servo drive, servo motor and other components during operation or soon after the power just turned off, because it may get hot and cause injury.

4. Other cautions

Please pay attention to below notifications, improper operation may cause breakdown, injury, electric shock, etc.

(1) Delivery & Installation

Choose correct way to deliver the product base on its weight.

 \bigotimes Never stack products which is beyond limitation.

Do NOT hand carry the cable, motor shaft, and encoder when deliver the servo motor.

Servo drive and motor must be installed on the location with enough bearing capacity.

 \bigcirc Do NOT stand or put heavy staff on the product.

Ensure the product is installed correctly as specified in this manual.

Inside the protective chamber, a specified space must be reserved between the servo drive and other equipment.

ODo NOT install, run the damaged or component missing servo drive and servo motor.

 \bigcirc Do NOT congest the vent of servo drive. Otherwise, it may cause a malfunction.

 \bigcirc Do NOT drop or strike the servo drive and servo motor as they are precision machinery.

Consult with Shihlin Electric system service representative if you need keep the product for a long period without using.

(2) Wiring

Do wiring carefully, otherwise, it may cause error on servo motor.

ODo NOT install phase-in capacitors, surge absorber, and EMI noise filters between the servo drive and servo motor.

Connect the servo drive and motor correctly(terminal U,V,W), otherwise, it may cause malfunction of servo motor.

Connect the servo drive output(terminal U,V,W)and servo motor input(terminal U, V, W) directly, Do NOT connect them by electromagnetic contactor, otherwise, it may cause abnormality or fault.

O Do NOT put the diode which control the output signal in wrong direction. Otherwise, it may cause malfunction: no signal output and protect circuit is disabled.

Fasten the cable which is connect to the terminal block with correct torque force. Otherwise, it may cause overheat on the cable and terminal block. (3) Trial run and adjustment.

Check the program and parameters before operation. Otherwise, it may lead to malfunction of the machine.

Do NOT adjust the parameter settings drastically, otherwise, it may cause some abnormal on the product.

(4) Operation

Set an emergency stop circuit outside the drive, which can be activated immediately in urgent cases to turn off the power supply.

 \bigcirc Do NOT disassemble, repair or modify the equipment.

Please confirm that the operation signal is off before clear the alarm. otherwise the motor might restart immediately and you may get injured.

Use noise filter to minimize the influence of electromagnetic interference, otherwise, the electric device nearby might be impacted.

 \bigcirc Do NOT burn or disassemble the servo drive, or it may cause hazardous gas.

Densure a specified combination of servo drive and motor is used.

Solution Not the sector of the sector of

(5) Maintenance and Inspection

DEnsure the power LED indicator is off before maintenance or inspection.

Only qualified electricians can install, wire, repair and maintain the servo drive and servo motor.

Do NOT disassemble the servo motor, otherwise you may get electric shock or injured.

When the power is ON, do NOT connect or disconnect the servo drive with motor.

SThe built-in electromagnetic brake is designed to hold the motor shaft, do NOT use for ordinary braking.

Note: the content of this manual may be revised without prior notice. Please consult our distributors or download the latest version at <u>http://www. seec. com. tw/en/</u>

1. Product overview and model description	1
1.1 Outline	1
1.2 Product checklist	1
1.3 Product model overview	2
1.3.1 Servo motor model naming rule	2
1.3.2 Servo drive model naming rule	5
1.3.3 SDP servo drive and motor	6
1.4 Servo drive appearance and panel description	7
1.4.1 200V drive appearance and panel	7
1.4.2 400V servo drive appearance and panel	8
1.5 Servo drive control modes introduction	9
1.6 Recommended breaker and fuse specification table	10
2. Installation	11
2.1. Precautions and storage	11
2.2. Installation environment	11
2.3. Installation Direction and Clearances	12
3. Wiring and signal	15
3.1. Connection of power supply and peripheral equipment	15
3.1.1. Peripheral equipment wiring diagram - 200V system	15
3.1.2. Peripheral equipment wiring diagram - 400V system	16
3.1.3 Description of drive connectors and terminals	17
3.1.4 Wiring for power supply	19
3.1.5 Specifications for the U,V,W connectors	21
3.1.6 Wire selection	25
3.2. The function diagram of servo system	27
3.3. Wiring for CN1(I/O signal)	28
3.3.1. CN1 terminal diagram	28

		3.3.2 CN1 signal wire shielding and grounding	31
		3.3.3 CN1 Terminal signal description	33
		3.3.4 Interface wiring diagram	56
		3.3.5 The specified DI and DO signal	64
	3.4	CN2 encoder signal wiring and description.	65
		3.4.1 Encoder connector specification	66
	3.5	CN2L full-closed loop/linear scale signal and wiring description	70
	3.6	CN3 communication port signal and wiring description	71
	3.7	CN4 USB communication port	72
	3.8	CN5 battery connector of absolute encoder	73
	3.9	Standard wiring instruction	74
		3.9.1 Position control mode(Pr Mode) wiring diagram	74
		3.9.2 Position control mode(Pt Mode) wiring diagram	76
		3.9.3 Speed control mode (S Mode)wiring diagram	77
		3.9.4 Torque control mode (T Mode)wiring diagram	78
		3.9.5 1PG wiring diagram	79
		3.9.6 10PG wiring diagram	80
		3.9.7 10GM wiring diagram	81
		3.9.8 20GM wiring diagram	82
		3.9.9 FX3U wiring diagram	83
		3.9.10 QD75 wiring diagram	84
4.	Pan	el display and operation	85
	4.1	. Panel description	85
	4.2	. Display procedure	86
	4.3	. Status display	88
	4.4	. One-touch Tuning Function	93
	4.5	. Alarm mode	93

4	.6. Diagnosis mode	
	4.6.1. External I/O signal indicator	
	4.6.2 DO Forced output	
	4.6.3 JOG operation	100
	4.6.4 Positioning test operation	101
	4.6.5 Auto-offset of analog input	103
	4.6.6 Inertia estimation and tuning by communication software	104
4	.7. Parameter mode	107
	4.7.1 16 bit parameter setting instruction	107
	4.7.2 32 bit parameter setting instruction	108
	4.7.3 Other precautions	112
5. Ri	unning operation	113
5	.1. Check items Before Running	113
5	.2. Test without load	114
	5.2.1. JOG test without load	114
	5.2.2. Positioning Test without load	116
5	.3. Tuning procedure	118
	5.3.1. Tuning method and type	118
	5.3.2. One-touch Tuning Function	121
	5.3.3 Auto tuning function	130
	5.3.4 Tuning in manual mode	135
	5.3.5 Interpolation mode	137
5	.4. Position mode parameter setting and operation	138
5	.5. Speed mode parameter setting and operation	140
5	.6. Torque mode parameter setting and operation	142
6. Co	ontrol Function	144
6	.1. Selecting the control mode	144

6.2.	Torque control mode	145
	6.2.1. Analog torque command	146
	6.2.2. Offset adjustment of the analog torque command	147
	6.2.3. Torque command smoothing	148
	6.2.4. Torque limit of torque control mode	149
	6.2.5. The speed limit of torque mode	149
6.3.	Speed control mode	152
	6.3.1. Selecting the Speed command	154
	6.3.2. Scaling of the analog speed command	155
	6.3.3. Smooth Speed command	156
	6.3.4. Torque limit of speed control mode	159
	6.3.5. Gain adjustment of the speed loop	161
	6.3.6. Resonance suppression unit	163
	6.3.7. Gain switch function	169
6.4	Position control mode	176
	6.4.1 External pulse command(Pt command)	178
	6.4.2 Internal position command (Pr command)	179
	6.4.3 Position command smoothing	180
	6.4.4 Electronic gear ratio	183
	6.4.5 Torque limit of position loop	185
	6.4.6 Position loop gain	185
6.5	Dual control mode	186
	6.5.1 Position/speed dual mode	187
	6.5.2 Speed / Torque dual mode	188
	6.5.3 Torque/position dual mode	189
6.6	Other functions	191
	6.6.1 Selection of regenerative resistor	191

	6.6.2 Analog monitor function	. 196
	6.6.3 Operation of electromagnetic brake	. 199
7. PR (procedure) program control introductions	. 202
7.1	PR introduction	. 202
7.2	The difference between the PR mode of SDP and SDA.	. 202
7.3	DI/DO and sequences in PR mode	. 204
7.4	Parameter setting of PR mode	. 206
7.5	PR sequence status	. 216
8. Para	meters	. 221
8.1.	Parameter definitions	. 221
8.2.	List of Parameters	. 223
8.3.	Parameter group introduction	. 259
	Table 8.1 Digital input (DI) descriptions	. 403
	Table 8.2 Digital output (DO) descriptions	. 410
9. Com	munication function	. 412
9.1	Communication hardware interface and wiring	. 412
9.2	Communication specifications.	. 415
9.3	Modbus communication protocol	. 416
	9.3.1 ASCII mode	. 416
	9.3.1 RTU mode	. 422
9.4	Write and read communication parameters	. 428
10.Trou	Ibleshooting	. 441
10.1	Alarm list and corrective actions	. 441
11. Spe	ecifications	. 465
11.1	Servo drive standard specifications	. 465
11.2	2 Interface and out dimensions of the servo drive	. 472
11.3	B Dimensions of servo drive	. 473

11.4 SME series servo motor general specification	477
11.4.1 Standard specification of low capacity servo motor	477
11.4.2 Standard specification of medium capacity servo motor	479
11.4.3 High inertia motor specification	481
11.4.4 (400V)High inertia motor specification	483
11.5 Motor dimensions	485
11.5.1 Dimensions of 300rpm motor.	485
11.5.2 Dimensions of 2000rpm motor	486
11.5.3 Dimensions of 1500rpm motor	487
11.5.4 (400V) dimensions of 1500rpm motor	488
11.5.5 Dimension of servo motor keyway	490
11.6 Electromagnetic Interference Filter (EMI Filter)	492
11.7 EMI interference countermeasure	493
12. Features	495
12.1 Motor T-N curve/S-T curve	495
12.2 Overload protection feature	503
13.Absolute servo system	507
13.1 Mitsubishi Absolute Position Detection System	511
13.1.1 Signal description	511
13.1.2 Start procedure	512
13.1.3 Absolute position data transmission protocol	513
13.2 Delta absolute position detection system	522
13.2.1 Signal description	522
13.2.2 Start procedure	523
13.2.3 Use DI/DO to initialize absolute coordinates	524
13.2.4 Use parameter settings to initialize absolute coordinates	525
13.2.5 Absolute position data transmission protocol	526

13.3 Absolute battery specifications	528
14. Appendix	530
14.1 Accessories	530
14.2 Regenerative resistor	541
14.3 Table of communication address	542
14.4 Compliance with global standards	547
14.4.1. Safety instructions	547
14.4.2. Professional technicians	547
14.4.3. Compliance with standards	547
14.4.4. Correct use	549
14.4.5. Basic inspection and maintenance	550
14.5 Manual version and revision history	552

1. Product overview and model description

1.1 Outline

Shihlin general type AC servo includes single mode and multi-mode. Single mode has the following four types of control mode: position mode(terminal input), position mode(internal register), speed mode and torque mode. And multi-mode has the following 8 types of control mode: position mode(terminal input)/speed mode, position mode(terminal input)/torque mode, position mode(internal register)/speed mode, position mode(internal register)/torque mode, speed mode/torque mode, position mode(terminal input)/position mode(terminal input)/position mode(internal register), position mode(terminal input)/position mode(internal register), speed mode and position mode(terminal input)/position mode(internal register)/speed mode.

The servo can be used for high-precision positioning system, speed control smoothing system in general machinery industry, host machine and tension control system.

Shihlin servo provides RS-485 serial communication function, and it also provides the most convenient USB communication function, this enable you can rapidly perform parameter setting, test operation, status monitoring and gain adjustment control by a computer which is installed with Shihlin communication software.

Shihlin servo provides auto tuning function, servo gain can automatically perform adjustment with the mechanical. The Shihlin servo is equipped with 23&24-bit pulse/rev absolute encoder, it can perform high-precision control.

1.2 Product checklist

Please check below items before you start to use our product

- Any loose or fall off screw on motor or drive.
- Check if the product model name on nameplates of the motor and drive are align with your purchase order. You can refer to the product model list in next section.
- Check if any damage or scratch on the surface of the motor and drive.
- Check if any abnormality on the motor shaft, you can manually rotate the motor shaft to check if it can move smoothly. But if the motor is equipped with electromagnetic brake, you cannot manually rotate the motor shaft.

If any of the above problems occurs, please contact the distributor.

A complete servo system includes:

- (1) A servo drive and a servo motor.
- (2) A UVW motor power cable: its one end with the U, V, W cables connect to the corresponding terminal block, and the other end connects to the UVW connector on the motor. The green wire connects to the ground terminal of the servo drive (optional purchase).
- (3) An encoder control signal cable: its one end connects to the CN2 of the servo drive and the other end to encoder.
- (4) A USB communication cable, its one end connects to CN4 of the drive, the other end to USB port of the computer. (Optional purchase).
- (5) A 50 Pin connector for CN1.
- (6) A 12 pin (P,D,C,N,L1,L2,R,S,T,U,V,W) terminal block for servo below 1KW.
- (7) A 6 pin(P,D,C,N,L1,L2) terminal block for1.5KW~3KW servo.
- (8) A 6 pin (R,S,T,U,V,W) terminal block for 1.5KW~3KW servo.
- (9) An installation guide.
- (10) Shihlin servo user manual, the electric copy can be download from the website.

1.3 Product model overview

1.3.1 Servo motor model naming rule

1. Naming rule

- 2. Description of each code item
- (1) Servo motor code: SM indicates servo motor.
- (2) Model code: E(200V), P(400V).

(3) Inertia classification: coding according to motor inertia:

Code	Classification			
L	Low inertia			
М	Middle inertia			
Н	High inertia			

(4) Motor capacity: motor output power

Code	005	010	020	040	075	085	100
200V motor power(W)	50	100	200	400	750	850	1000
Code	130	150	180	200	300	500	700
200V motor power(W)	1300	1500	1800	2000	3000	5000	7000

Code	180	290	440	550	750
400V motor power(W)	1800	2900	4400	5500	7500

(5) Rated speed: the rated motor speed.

Code	15	20	30
Rated speed(rpm)	1500	2000	3000

(6) Encoder type: Shihlin servo motor encoder type.

Code	S	М
	200V:	200V:
	24bit (50W~750W)	24bit (50W~750W)
Single turn resolution type	23bit (850W~7KW)	23bit (850W~7KW)
		400V:
		23bit (1.8KW~7.5KW)
Multi-turn resolution type	—	16bit

(7) Brake and oil seal: the following codes is to indicate whether the motor is equipped with brake and oil seal.

Code Item	A	В	С	D
Brake	_	•	_	•
Oil seal	_	_	•	•

(8) Keyway and outlet type: the following code indicates the configuration of motor keyway and outlet type.

Code Item	A	В	С	D
Keyway	_	•	_	•
Back side cable	_	_	•	•

(9) Safety certification: the certified safety certification of the motor is indicated by the following code:

Code Item	CE certification	Compliant with UL/CE certification
Code	-	U

Coding example:

Example(1): for a 200W motor, low inertia, rated speed 3000rpm, without brake&oil seal& keyway, single turn encoder, CE certified model, its model name is as follows: SME-L02030SAA.

Example(2): for a 750W motor, low inertia, rated speed 3000rpm, with brake, without oil seal, with keyway, multi-turn encoder, back side cable, UL certified, its model name is SME-L07530MBDU.

Example(3): for a 3000W motor, low inertia, rated speed 2000rpm, without brake, with oil seal and keyway, multi-turn encoder, CE certified, the model name is SME-L30020MCB.

1.3.2 Servo drive model naming rule

1. Naming rule

2. Description of each coding item

- (1) Drive code: SD means Servo Drive
- (2) Product series: P
- (3) Drive capacity: motor output power. Multiply the motor output power by 1/10 and then indicate it as a three-code number. For models above 1000W, the third code uses the English letter K to represent 1000W. The example is as follows:

020 means 200W

150 means 1500W

300 means 3000W...like that.

(4) Power type: input power specification

A2: single-phase or three-phase 200 ~ 240 VAC

A4: three-phase 380 ~ 480 VAC

(5) Mode code

A: without full-closed loop. (CN2L)

C: with full-closed loop. (CN2L)

Example:

Example (1): A 200W drive, single-phase or three-phase 200 ~ 240 VAC, with full-closed loop control function, the code is as follows: SDP-020A2C.

Example (2): A 3000W drive, three-phase 400 ~ 480 VAC, with full-closed loop control function, the code is as follows: SDP-300A4C.

1.3.3 SDP servo drive and motor

200VAC system

	Sonia driva	Corresponding
	Servo unve	servo motor
1001		SME-L005300000
10000	5DP-010A2C	SME-L010300000
2001		SME-L020300000
20000	5DP-020A2C	SME-H020300000
400\M		SME-L040300000
40000	3DF-040A2C	SME-H040300000
750\/		SME-L075300000
75000	5DP-075A2C	SME-H075300000
		SME-H085150000
1000W	SDP-100A2C	SME-M100200000
		SME-L100200000
		SME-M150200000
1500W	SDP-150A2C	SME-L150200000
2000W	SDP-200A2C	
		SME-L200200000
		SME-H13015onn
3000\//	SDP-30042C	SME-H18015onn
300077	50F-300A2C	SME-M300200000
		SME-L300200000

Note 1: refer to section 1.3.1 for the description of $\circ \Box \Box \Box$ in servo motor model name.

400VAC system

	Servo drive	corresponding servo motor
1800W	SDP-200A4C	SMP-H180150000
2900W	SDP-300A4C	SMP-H290150000
4400W		SMP-H44015000
5500W		SMP-H55015000
7500W	SDP-700A4C	SMP-H75015000

Note 1: refer to section 1.3.1 for the description of $\circ \Box \Box \Box$ in servo motor model name.

1.4 Servo drive appearance and panel description

1.4.1 200V drive appearance and panel

1.4.2 400V servo drive appearance and panel

1.5 Servo drive control modes introduction

	Mode name	Code	Description
	Position mode	Dt	Drive receives the external position pulse command which is
	(terminal input)	Γl	input from terminal and runs the motor to the target position.
	Position mode		The drive receives the position command which is provided by
	(internal	Dr	the internal register (64 groups of registers). and runs the motor
e	(internal	FI	to the target position. The DI signal can be used to select the
noc	register)		register number.
e			The drive receives the speed command and runs the motor to
ing	Speed mode	S	the target speed. The speed command can be selected by the
S	Speed mode	5	DI signal to use analog voltage command or internal speed
			command(7 groups of register).
			The drive receives torque command which is provided by
	Torque mode	Т	analog voltage command or internal torque command, and
			runs the motor to the target torque.
		Pt-S	Pt/S is switched mutually via the signal of DI(LOP).
		Pt-T	Pt/T is switched mutually via the signal of DI(LOP).
		Pr-S	Pr/S is switched mutually via the signal of DI(LOP).
	Multi modo	Pr-T	Pr/T is switched mutually via the signal of DI(LOP).
	S-T		S/T is switched mutually via the signal of DI(LOP).
		Pt-Pr	Pt/Pr is switched mutually via the signal of DI(Pt-Pr).
		Pt-Pr-S	Pt/Pr/S is switched mutually via the signal of DI(LOP + Pt-Pr).
		Pt-Pr-T	Pt/Pr/T is switched mutually via the signal of DI(LOP + Pt-Pr).

Shihlin drive provides a variety of control modes for you, as detailed in the below table:

- ★ Set PA01 to select the mode. After setting the parameter, restart the power to activate the changed setting.
- ★ If use the default configuration directly, PA01 need set to 1XXX.

1.6 Recommended breaker and fuse specification table

Drive model name	Fuse	Breaker
SDP-010A2C	5A	5A
SDP-020A2C	5A	5A
SDP-040A2C	10A	10A
SDP-075A2C	20A	15A
SDP-100A2C	20A	15A
SDP-150A2C	40A	20A
SDP-200A2C	50A	30A
SDP-300A2C	70A	30A

Specification chart of Shihlin servo drive fuse and breaker(200V)

Specification chart of Shihlin servo drive fuse and breaker(400V)

Drive model name	Fuse	Breaker
SDP-200A4C	30A	20A
SDP-300A4C	50A	30A
SDP-500A4C	90A	60A
SDP-700A4C	120A	70A

2. Installation

2.1. Precautions and storage

- Do not install the product in the location with or nearby inflammable objects.
- Do not over tighten the cable between the drive and the motor.
- Do not place any heavy objects on the top of the drive.
- Be sure to fasten every screw tightly when fixing the drive.
- Install the drive at a location with proper weight capacity.
- The motor shaft must be aligned with the shaft of the equipment.
- Never let below items go inside of the servo drive. Including: conductive matter: such as screw, metal parts, etc, and flammable matter, such as oil, etc.
- Upgrade the diameter of cable which connect the U/V/W connector and the encoder if the distance between the drive and the motor is over 20meters.
- Do not congest vent of the drive, otherwise breakdown may be occurred.
- Do not drop or strike the drive.
- Do not try to operate the drive if something has been damaged.
- Refer to section 10.1 and 11.3 for drive and motor storage precautions.

2.2. Installation environment

The applicable ambient temperature for Shihlin drive is between 0°C and 55°C. If it exceeds 45° C, please place the drive in a well-ventilated or air-conditioned room. It is recommended to keep the ambient temperature below 45° C for long-term operation to ensure the reliable performance of the product. If this product is installed in a distribution box, check the size of the distribution box and its ventilation condition, make sure the internal electrical devices has no overheating risk, Besides, check if the vibration of the machine affects the electrical devices of the distribution box.

In addition, the conditions for using Shihlin servo include the following:

- Locations without high-heating devices.
- Locations without floating dust and metal particles.

- Locations without corrosive, inflammable gas and liquid.
- Locations without water drops, steam, dust or oil dust.
- Locations without electromagnetic noise interference.
- Select a solid, vibration-free location.

2.3. Installation Direction and Clearances

Precautions:

Mount the servo drive in the correct direction according to the requirement. Otherwise, it may cause malfunction. For better ventilation and cooling, when installing Shihlin AC servo drive, there must be sufficient clearance space between its adjacent objects and the wall, or overheating may result in machine malfunction. Do not congest the ventilation holes of the servo drive, and do not dump, otherwise it may cause malfunction of the servo drive.

Correct

Wrong

Installation diagram

In order to have adequate air flow for ventilation, you must follow the suggested clearances when installing one or more servo drives (refer to the following diagrams).

3. Wiring and signal

This chapter explains the wiring method of Shihlin servo drive and the definition of signals, as well as the standard wiring diagrams in all modes.

3.1. Connection of power supply and peripheral equipment

3.1.1. Peripheral equipment wiring diagram - 200V system

For detailed EMI filter content, please refer to section 12.6 EMI Filter

 ▲ DANGER
 To prevent electric shock, the ground protection (PE) terminal (marked ⊕ terminal) of the servo drive must be connected to the ground protection terminal of the controller.

3.1.2. Peripheral equipment wiring diagram - 400V system

* For detailed EMI filter content, please refer to section 12.6 EMI Filter

DANGER To prevent electric shock, the ground protection (PE) terminal (marked terminal) of the servo drive must be connected to the ground protection terminal of the controller.

3.1.3 Description of drive connectors and terminals

Item	code	Description			
Power input for the main circuit	R, S, T	Connect to three-phase AC power			
Power input for the control circuit	L1, L2 / + -	Connect to single-phase AC power/DC24V.		se AC power/DC24V.	
		Terminal code	W co	ire Ior	
Motor power		U	R	ed	
connector	U, V, VV, PE	V	Wł	nite	
		W	Bla	ack	
		PE	Gre	een	
Regenerative resistor terminals	P, D, C, N	Use an externa resistor		Con resis ope	nect P and C to the stor, and P and D are left n.
		Use a built resistor	t-in	Sho and	rt-circuit P and D contacts, P and C are left open.
Ground terminals		Connect to the ground wires for the power and servo motor, which is in the green screw on the outside of the controller.			
P: main circuit [+] terminal N: main circuit [-]	P, N	If brake unit is used, you should connect its [+] terminal to the [P] terminal of servo drive, and connect its [-] to the [N] terminal of servo drive.			
terminal		The brake unit is optional purchase item, usually it is not required. It is used to absorb the regenerative energy when the huge regenerative power generated by the servo motor.			
I/O connector	CN1	Connect to the	he ho	ost co	ntroller.
Encoder connector	CN2	Connect to the encoder.			
Position feedback	CN2L	Connect to p	ositio	on fee	edback unit.

connector		
RS-485 connector	CN3	Connect to RS-485 device.
USB connector	CN4	Connect to USB slot of PC
power connector for absolute encoder	CN5	Connect to battery pack of absolute encoder (optional purchase)

Pay special attention to the following when wiring:

1. Separate R, S, T and U, V, W from other signal wires. The separation should be at least 30 cm.

2. When the power is off, do not touch R, S, T and U, V, W power cables, since the capacitance inside the servo drive may still contain a dangerously large amount of electric charge. Wait until the charging light is off before touching.

3. If the connection cable for encoder is not long enough, use a shielded twisted-pair signal cable and the length should be within 20 meters (65.62 ft). If it is over 20 meters (65.62 ft), choose a signal cable with two times thicker gauge to avoid excessive signal attenuation.

4. If the power supply and the detector (encoder) of the SV motor are not fixed on the motor, it may sway and cause poor wire contact.

5. The control power for 400V model is DC24V.

3.1.4 Wiring for power supply

Insulate the connection of the power terminal to avoid the possibility
 DANGER of electric shock.

• The power supply cable(U,V,W) of servo drive and servo motor must CAUTION be connected correctly to avoid abnormal operation on servo motor.

Servo motor cannot be connected to commercial power supply, otherwise it may cause malfunction.

The Shihlin servo drive power wiring is three-phase power. In the following diagram, Power ON is a contact, and Power OFF and Alarm Processing are b contacts. 1MC/a is self-retaining power supply and 1MC is electromagnetic contactor.

200V Series:

★ Note: terminal P,N cannot be grounded.

3.1.5 Specifications for the U,V,W connectors

Dive capacity	Motor model	
400144	SME-L00530	
10000	SME-L01030	456 34
200W	SME02030	
400W	SME-:04030	With brake Without brake
750W	SME075300000	

U, V, W wiring connector (female) specifications of low/high inertia motor:

The following table shows the signal of the UVW connector on the low/high inertia motor:

PIN	Signal	Wire color
1	U	Red
2	V	White
3	W	Black
4	PE	Green/yellow(green is the bottom)
5	B1	Black(for motor with electromagnetic brake)
6	B2	Black(for motor with electromagnetic brake)

U, V, W connector (male) specifications of low/middle/high inertia motor:

Drive capacity	Motor model	
1KW	SME – H08515∘ SME – ₀10020∘	
1.5KW	SME-15020	
2KW	SME-L20020	
ЗКW	SME-H13015 SME-H18015 SME-L30020	

U, V, W connector (male) specifications of middle inertia motor:

Drive capacity	Motor model	
2KW	SME – M20020∘□□□	$\begin{bmatrix} & & & \\ & & & & \\ & & & \\ & & & & $
ЗКW	SME – M30020 •===	

The following table shows the signal of the UVW connector on the low/middle/high inertia motor :

PIN	Signal
А	NC
В	U
С	V
D	W
Е	PE
F	B1
	(for motor with electromagnetic brake)
G	B2
	(for motor with electromagnetic brake)
Н	NC

U, V, W connector (male) specifications of high inertia motor(400V):

Drive capacity	Motor model	
2KW	SMP−H18015∘	D A
ЗKW	SMP – H29015∘	$\left(\left(\left(\begin{array}{cc} C & B \\ C & B \end{array} \right) \right) \right)$
5KW	SMP-H44015∘ SMP-H55015∘	
7KW	SMP-H75015	
The following table shows the signal of UVW connector on high inertia motor(400V).

PIN	Signal
А	U
В	V
С	W
D	PE

Brake connector (male) specifications of high inertia motor (400V):

Drive capacity	Motor model	
2KW	SMP−H18015∘	
ЗKW	SMP-H29015	1°
5KW	SMP – H44015∘□□□ SMP – H55015∘□□□	
7KW	SMP-H75015	

The following table shows the signal of brake connector on high inertia motor(400V).

PIN	Signal
1	DC24V
2	PE

★ Note: the wiring above is the connector from the motor itself

★ Please refer to section 1.3.1 for description of ○□□□

3.1.6 Wire selection

	Wire[mm ²]									
rive model	Power supply wiring(AWG)									
	R, S, T	L1, L2	U, V, W	P, D, C, N	B1, B2					
SDP-010A2C										
SDP-020A2C					2(AWG14)					
SDP-040A2C	2(AWG14)		2(AWG14)	2(AWG14)						
SDP-075A2C										
SDP-100A2C										
SDP-150A2C										
SDP-200A2C	$2 E(\Lambda)\Lambda(C12)$	2(AVVG14)								
SDP-300A2C	3.5(AVVG12)		3.5(AVVG12)							
SDP-200A4C	2(AWG14)		2(AWG14)							
SDP-300A4C	3.5(AWG12)		3.5(AWG12)							
SDP-500A4C										
SDP-700A4C	0(AVVG10)		0(AVVG10)							

	Encoder wiring(AWG)								
Drive model	Specification	Standard length	Number of wires	Size (mm ² (AWG))					
SDP-010A2C									
SDP-020A2C									
SDP-040A2C									
SDP-075A2C									
SDP-100A2C									
SDP-150A2C		0 m otoro	7						
SDP-200A2C	UL1332	2 meters	7 wires	AVVG24					
SDP-200A4C									
SDP-300A2C									
SDP-300A4C									
SDP-500A4C									
SDP-700A4C									

★ Please use the recommended specification or higher to avoid danger.

★ The shield terminal should be grounded.

- ★ Using shielded twisted-pair cable for encoder wiring to reduce the noise interference.
- ★ American Wire Gauge (AWG) is US wire diameter standard.

- ★ The standard is to use 600V vinyl wire, and the wiring length should be less than 30 meters.
- If the wiring length exceeds 30meters, please consider the voltage drop when selecting wire gauge.
- ★ According to UL/C-UL (CSA) specifications, you should use UL-certified copper wires with 60°C or higher rated temperature.

3.2. The function diagram of servo system

• 200V system: models of 100W~3kW

Note: models below 400W (included) have no fan; 400V model control power supply is DC24V.

3.3. Wiring for CN1(I/O signal)

3.3.1. CN1 terminal diagram.

Shihlin servo drive provides 12 user-defined digital inputs (DI) and 6 digital outputs (DO), which enable a more flexible communication between the servo drive and the controller. The 12 user-defined DIs are PD02~PD09 and PD21~PD24, and the 6 DOs are PD10~PD14 and PD26. In addition, it provides differential output encoder A+, A-, B+, B-, Z+, Z- signals, analog torque command input, and analog speed command input, its pin diagram is as follows:

(1) CN1 connector(female)

Front view

Pin assignment

Pin	Code	Function	Pin	Code	Function	Pin	Code	Function	Pin	Code	Function
1	Vcc (15V)	+ 15V power output (for analog command)	2	VC/ VLA	Analog speed command/limit (Note 2)	26	Vcc (15V)	+15V power output (for analog command)	27	TC/ TLA	Analog torque command/limit (Note 2)
3	LG	Ground for analog input signal	4	LG	Ground for analog input signal	28	LG	Ground for analog input signal	29	MON1	Analog monitoring 1
5	NG	Input pulse train	6	NP	Input pulse train	30	MON2	Analog monitoring 2	31	LG	Ground for analog input signal
7	OPC	Open collector power input	8	PP	Input pulse train	32	HPP	Input pulse train (high speed) (Note 1)	33	HPG	Input pulse train (high speed) (Note 1)
9	PG	Input pulse train	10	HNP	Input pulse train (high speed) (Note 1)	34	LA	Encode A phase pulse	35	LAR	Encode A phase pulse
11	HNG	Input pulse train (high speed) (Note 1)	12	DI11	Digital input 11	36	LB	Encode B phase pulse	37	LBR	Encode B phase pulse
13	DI12	Digital input 12	14	DI1	Digital input 1	38	LZ	Encode Z phase pulse	39	LZR	Encode Z phase pulse
15	DI2	Digital input 2	16	DI3	Digital input 3	40	OP	Encode Z phase pulse (open collector)	41	DO1	Digital output 1
17	DI4	Digital input 4	18	DI5	Digital input 5	42	DO2	Digital output 2	43	DO3	Digital output 3
19	DI6	Digital input 6	20	DI7	Digital input 7	44	DO4	Digital output 4	45	DO5	Digital output 5
21	DI8	Digital input 8	22	DI9	Digital input 9	46	DO6	Digital output 6	47	DOCOM	Digital output common terminal
23	DI10	Digital input 10	24	SG	Digital power ground	48	Vdd (24V)	+24V internal power output	49	COM+	Digital input power
25	SG	Digital power ground				50	SG	Digital power ground			

Note 1:If HPP, HPG, HNP, HNG are differential inputs, it can receive pulse commands of up to 4Mpps. If AB phase pulse input multiply by 4, it can receive pulse commands of up to 16Mpps.

Note 2:A/D conversion needs to support 12bit/16bit resolution, and it's not required to support them at the same time.

3.3.2 CN1 signal wire shielding and grounding

The both ends of the CN1 signal wire which are the CN1 connector and the upper controller connector, their shielding and grounding wire must be connected to the corresponding pins to effectively achieve the shielding and grounding functions.

The shielding of CN1 encoder connector wiring instruction is as follows:

1. Pull out the metal shielding, surround and fix it with a copper sheet.

2.Screw the big metal case to fix the cooper sheet, make sure the copper sheet is completely covered the extended metal sheet, and it is contact with the metal part of the CN1 connector.

3. Put it into the connector housing as below picture shows:

4. The last step is to fasten the screw of housing:

3.3.3 CN1 Terminal signal description

This section introduces the signals which mentioned in section 3.3.1.

1. CN1 terminal signal

The detailed description of each signal in CN1 50Pins is as follows

The codes of the control modes in the following table are:

Pt : position control mode/ position mode(terminal input)

- Pr : position control mode/position mode(internal register)
- S: speed control mode
- T: torque control mode

Signal name	Code	Pin NO	Function	Control mode	
+15V power	Vcc	Vcc Output DC15V from VCC-LG. It can be			
output(for analog	(15V)	CN1-26	used as power supply for TC, TLA, VC,	ALL	
command)			VLA.		
			It applies voltage of DC -10v~+10v		
Appleg apped			between VC-LG. In S mode, the motor		
Analog speed		CN1-2	Turns the PC12 setting speed at $\pm 10^{\circ}$.	S,T	
command/limit	VLA		hotween VI A LC in T mode the motor		
			between VLA-LG. In T mode, the motor		
			Turns the PC12 setting speed at $\pm 10^{\circ}$.		
Ground for analog	LG	CN1-3/4 /28/31	R S continion pin of TEA, TC, VC, VEA,	A I I	
input signal			OP, MOT, MOZ, VCC. And each pin is	ALL	
			To output or limit the tergue of correct		
			To output of limit the torque of servo		
			0.40V Maximum targua will be		
			concreted at +10///the torque		
			generated at $\pm 10\%$ (the torque		
			PC(12) When the appled torque limit	Pt,	
		CN1-27	(T A) is valid, the serve motor torque	Pr,	
command/iimit			will be limited in the entire range	S	
			The voltage of TLA-LG is DC 0-10V		
			Maximum torque will be generated at		
			+10V if TLA is connected to the positive		
			polarity of the power supply.		

Signal name	Code	Pin NO	Function	Control mode
	NG	CN1-5	Input command pulse train 1. In open-collector type(max input	
	NP	CN1-6	frequency is 200kpps) PP-SG is forward pulse train.	
	PP	CN1-8	NP-SG is reverse pulse train. 2.In differential line drive type (the max	
Forward pulse train Reverse pulse train	PG CN1-		input frequency is 4Mpps) PG-PP is forward pulse train. NG-NP is reverse pulse train. The command pulse train type can be changed by PA13 setting.	Pt
	HNP	CN1-10	High speed input command pulse train.	
	HNG	CN1-11	input frequency is 4Mpps)	
	HPP	CN1-32	HNG-HNP is reverse pulse train.	
	HPG CN1-33		changed by PA13 setting.	
open collector power input	OPC	CN1-7	When pulse signals input is open collector type, this pin supplies the positive polarity of DC24V.	ALL
Digital power ground SG		CN1-24 CN1-25 CN1-50	1.It's common pins for input signal such as SON,EMG.2.Each pin is connected internally and separated from LG.	ALL
Analog monitoring 1	MON1	CN1-29	To output voltage between MO1-LG according PC14 setting.	ALL
Analog monitoring 2	MON2	CN1-30	To output voltage between MO2-LG according PC14 setting.	ALL
Encode A phase	LA	CN1-34	1.Output the differential pulses of PA14	
pulse differential output(line driver)	LAR	CN1-35	setting value in one revolution. 2.A π/2 delay between A phase and B	ALL
Encode B phase pulse differential	LB	CN1-36	phase (when the servo motor runs in CCW direction)	ALL
output(line driver)	LBR	CN1-37	3.The phase sequence of rotation and	

			difference between A phase and B phase could be defined by the PA39 setting value.	
Freedo Zinhooo	LZ	CN1-38	Output the OD simpling differential line	
pulse differential output(line driver)	LZR	CN1-39	drive type.	ALL
Encode Z phase pulse train (open collector)	OP	CN1-40	Output the ZERO signal of encoder. Servo motor generates 1 pulse per revolution.	ALL
Digital input power	COM+	CN1-49	DC24V for input interface. It connects to either positive polarity of external DC24V power or VDD terminal. It's forbidden to connect them both at the same time.	ALL
Common pin of digital output	DOCOM	CN1-47	It's common pin of output signal for Sink type and Source type. When in Sink type, DOCOM connects to SG or negative polarity of external 24V power. When in Source type, DOCOM connects to VDD or positive polarity of external 24V power. Refer to section 3.3.4 for detailed wiring.	ALL
Internal +24V power output	VDD (24V)	CN1-48	It output +24V±10% power from VDD-SG. It need connect to COM+ when using as power of digital interface.	ALL

The signals of digital input and digital output will be explained in detail in the following sections.

2.Shihlin servo CN1 I/O

The table of Shihlin Servo CN1 I/O, digital input and digital output names & abbreviations are as follows:

Abbreviation	Signal name	Abbreviation	Signal name
SON	SERVO ON	CTRG	Position command trigger
LSP	Limit of forward rotation	TLC	Torque limiting control
LSN	Limit of reverse rotation	VLC	speed limiting control
CR	Clear	RD	Ready
SP1	Speed option 1	ZSP	Zero speed detection
SP2	Speed option 2	INP	In-position ready
PC	Proportion control	SA	Speed attained
ST1	Forward rotation activated	ALM	Alarm signal output
ST2	Reverse rotation activated	OP	Z phase pulse(open collector)
TL	Torque limit option	LZ	Encoder Z phase pulse
RES	Reset	LZR	(differential line drive)
EMG	External emergency stop	LA	Encoder A phase pulse
LOP	Control mode switch	LAR	(differential line drive)
VC	Analog speed command	LB	Encoder B phase pulse
VLA	Analog speed limit	LBR	(differential line drive)
TLA	Analog torgue limit	VCC	Positive polarity of +15V power
			output
тс	Analog torgue command	VDD	Positive polarity of +24V internal
_			power output
RS1	Forward rotation option	COM +	Digital input power
RS2	Reverse rotation option	SG	24V power ground
PP		OPC	Open collector power input
NP		LG	15V power ground
PC	Input command pulse train		External analog output
FG			monitoring 1
			External analog output
NG		WONZ	monitoring 2
HPP		SD	Shielding
HNP	High speed input command	POS1	Position command 1
HPG	pulse train	POS2	Position command 2
HNG		POS3	Position command 3

3. Detailed explanation for DI/DO signal.

DI Wiring

The users can define the DI function by editing user parameters, see the following table for details:

Signal name	Code	Function	Control mode
Servo ON	SON	If SON is ON, the basic circuit is on and servo is ready to run(servo ON status). If SON is OFF, the basic circuit is off and the servo motor is in free run status(servo OFF status).	ALL
Reset	RES	If the RES is ON for over 50ms, reset is valid, but may not able to clear an abnormal alarm status (refer to section 11. 1). The circuit is still on when set PD20 to XXX1.	ALL
Proportion control	PC	The speed controller will switch from proportion integral control to proportion control when PC signal is ON. When servo motor stops, any external pulse will generate torque to adjust the position shift. Once the positioning is done(stopped) and machine shaft is locked, the PC signal will be on and the unnecessary torque adjustment will be suppressed. If you want to lock the servo for long time, you need to turn on both the PC signal and the TL signal at the same time, the analog torque limit will control it below the rated torque.	Pt, Pr, S
Torque limit option	TL	When TL is on, TLA will be valid. Please refer to description on TL1.	Pt, Pr, S

1		1												
		۷	Vhen T	TL1 is o	on, inr	ner tor	que li	mit 2 (parameter	setting2)					
		will be valid.												
		Input signal												
			۲L1	TL		orque		/alue						
		()	O F	Param									
				ľ	f TLA	> PA()5 set	ting => PA05 is v	alid.					
Inner		C)	1 ľ	f TLA	< PA0)5 set	ting =>TLA is val	id.					
torque	TI 1									ALI				
limit				ľ	f PC2	5 sett	ing >	PA05 setting =>	PA05 is	,				
option		-	1	0	alid.									
				ľ	f PC2	5 sett	ing <	PA05 setting =>	PC25 is					
				Ň	alid.									
					τι Λ			ting \rightarrow DC25 is	alid					
		1	1	1	Γ I LA	valid.								
				ľ										
		S	Speed	control	mode	e: whi	ch is t	o select the spee	ed					
		с	command. When SP3 is used, make it valid by setting											
		iı	internal parameters											
Speed		Par		Parameter Inp		t signa	al	Speed						
option 1	SP1		settin	g	SP3	SP2	SP1	command						
									\backslash	0	0	Speed analog		
								n		Ŭ	Ŭ	command (VC)		
			speed	ł	\backslash	0	1	Inner speed		S,				
			optior	ו		Ŭ		command 1		Т				
			(SP3)	is not	\backslash	1	0	Inner speed						
			used. (initial status)					command 2						
Speed	0.00				$\left \right\rangle$	1	1	Inner speed						
option 2	SP2							command 3						
			when	1)	0	0	0	Speed analog						
			speed	L L	0	0	1							
				option	I	U	U	I	ninei speeu					

		(SP3) IS				command 1		
		valid	0	1	0	Inner speed		
						command 2		
			0	1	1	Inner speed		
						command 3		
			1	0	0	Inner speed		
				_		command 4		
			1	0	1	Inner speed		
				-		command 5		
			1	1	0	Inner speed		
			<u> </u>	<u> </u>	Ŭ	command 6		
			1	1	1	Inner speed		
				•	•	command 7		
		Torque contro	l mod	e: wh	ich is	to select the spe	ed limit.	
		Paramotor	Inpu	t sign	al			
		Farameter	SP	SP SP 🗄		Speed limit		
		Setting	3	2	1			
		When speed option		0	0	Analog speed		
Speed	SP3			U	0	limit (VLA)		
option 3			\backslash	0	1	Inner speed		
				0		command 1		
		(SP3) is not		1	0	Inner speed		
		used. (initial				command 2		
		status)			1	Inner speed		
				1		command 3		
			•	0	0	Analog speed		
			0	0	0	limit (VLA)		
			0	0		Inner speed		
			0	0	1	command 1		
		When				Inner speed		
		speed	0	1	0	command 2		
		option				Inner speed	-	
		(SP3) is	0	1	1	command 3		
		valid	1			Inner speed	-	
				0	0	command 4		
			1 C			Inner speed	4	
				0	1	command 5		
			1	1	0	Inner speed	-	

			l					
						command 6		
			1	1	1	Inner speed		
				1	1	command 7		
Forward		When sta						
rotation	074	directions	directions:					
activated	511		Input sig	gnal		Servo motor		
activated			ST2	ST1		otation direction	_	
			0	0		Stop(servo locked)	_	
			0	1	(CCW	_	
			1	0	(CW	_	S
Reverse			1	1		Stop(servo locked)		
rotation	ST2	1.If both S	ST1 and S	ST2 a	re ON	l or OFF during ope	eration, the	
activated		servo will	be decele	erated	d to st	op and be locked.	The	
		decelerate	e time is I	PC18.				
		2.lf analog	g speed c	omm	and ('	VC) is 0V, it will not	generate	
		servo lock						
Forward		To select	the gener	ation	direc	tion of servo motor	torque, the	
rotation	RS1	options ar	e as follo	ws:				т
option								

			Input signal		Torque generation					
			RS2	RS1	direction					
			0	0	No torque generated					
D					Forward rotation					
Reverse	DOO		0	1	torque, reverse					
rotation	R52				rotation regeneration.					
option					Reverse rotation					
			1		torque, forward					
					rotation regeneration.					
			1	1	No torque generated					
Oninin		This activ	This activated signal sets current position as homing origin							
Origin	ORGP	in Pr mod	e.				Pr			
position		Turn the S								
Deturn to		In the inte	ernal pos	ition regi	ster mode, when searc	hing the				
Return to	SHOM	origin, the	ated after	Pr						
ongin		SHOM is	on.							
Electronia		When CM	11, CM2	is used, t	the combination of CM ²	1 and				
Electronic	CM1	CM2 can	be used	as parar	neter setting, it sets 4 k	kinds of				
year	CIVIT	electronic	gear rat	tios nume	erator.					
		CM1 and	CM2 ca	nnot be u	ised in the absolute pos	sition				
		detection	system.				Dt			
		Input signal			Electronic gear		Pl, Dr			
Electronic			CM2	CM1	numerator		FI			
gear	CM2		0	0	PA06(CMX)					
option 2			0	1	PC32(CMX2)					
			1	0	PC33(CMX3)					
			1	1	PC34(CMX4)					
		Turn CR o	on to clea	ar the pos	sition control counter er	ror pulses	D+			
Clear	CR	on its risir	ng edge.	When th	e PD18 is set to xxx1,	the pulse	Γι, Dr			
		is always	cleared	if CR is c	n.		ΓI			
Gain		When usi	ng this s	ignal, you	u should enable CDP a	nd turn				
switching	CDP	CDP on to	o switch	each gai	n values to the setting	value.	ALL			
option										
		If you turn	n EMG C	OFF, the n	notor will be in emerge	ncy state,				
External		servo will	be off a	nd the bra	ake will be activated. To	urning				
emergency	EMG	EMG ON	will relea	ase the e	mergency stop status i	n urgent	ALL			
stop		cases. W	hen set l	PD01 to ²	IXXX, this signal will be	e				
		automatic	automatically on(keeps ON) .							

Limit of forward rotation	LSP	Use as limit of for can be operated f	P is on, the motor	Pt,							
Limit of reverse rotation	LSN	Use as limit of rev can be operated i	Use as limit of reverse rotation. When LSN is on, the motor can be operated reversely.								
Inhibit		To inhibit pulse in									
pulse	INHP	In position mode,	Pt								
input		invalid when INHI									
		In position/speed									
		select control mo									
			LOP	Control							
			0	Desition							
			0	Position							
		In speed/torque a		oh modo I OI] Dis used to select						
		control mode									
		control mode.		Control]						
			LOP	mode							
			0	Speed							
			1	Torque		Refer to					
		In torque/positior	the different								
Control		select control mo									
mode	LOP			Control		control					
switch			LOP	mode		modes					
			0	Torque		descripti					
			1	Position		on					

Signal name	Code				Fun	ction				Control mode
Position command 1	POS1	Posi								
Position command 2	POS2	com man d	POS 6	POS 5	POS 4	POS 3	POS 2	POS 1	CTR G	
Position command	POS3	P0	0	0	0	0	0	0	↑ (
Position	D004	P1	0	0	0	0	0	1	1	Pr
command 4	P054	~	~	~	~	~	~	~	\uparrow	
Position		P50	1	1	0	0	1	0	↑	
command 5	POS5	P51	1	1	0	0	1	1	↑ (
Position	5000	~	1	~	~	~	~	~	↑	
command 6	POS6	P63	1	1	1	1	1	1	1	
Position command trigger	CTRG	In Pr m selecte	iode, wl d by P0	hen CTI DS1~6 i	RG is o s valid.	n, the p	osition (commar	nd	Pr
Motor stop command Pr	STOP	In Pr m	ode, if	STOP is	s on, mo	otor will	stop.			Pr
E-Cam engaging control	САМ	To perf setting	orm the method	e E-Carr d of u ar	n engag nd z vali	ement o ue in PC	control (C66).	refer to	the	Pr
E-Cam phase alignment	ALGN	When / servo v	ALGN is vill perfo	s enable orm the	ed(PC82 alignme	2.bit0=1 ent imm	& PC8 ediately	2.bit1=1 / if this I), the DI is on.	Pr
Gantry control switch	GTRY	After th function PA26.X this DI two axe	iis DI is n of the <=2 (gai stops c es.	on, it te gantry ntry fun alculatir	emporar (synchr ction en ng and r	ily disat onous r abled). monitori	oles the notion) The axi ng the o	monito when is that re deviatio	ring eceives n of the	Pt

Full- closed loop control switch	FHS	To temporary stop full-closed loop control function when X=1 in PA26. If this DI is on, full-closed control function will be invalid.	Pt, Pr
Full- closed error clearance	FEC	Used for clearing deviation pulse between full-closed linear scale and motor encoder.	Pt/Pr
Linear compens ation switch	MAP	After the upper controller is reset to zero, the linear compensation function will be activated when MAP is on.	ALL
Event trigger Pr command 1	EV1		
Event trigger Pr command 2	EV2	The event trigger Pr command 1-4: the status change of	Pr
Event trigger Pr command 3	EV3	EV1~EV4 is used as a trigger event.	
Event trigger Pr command 4	EV4		
Absolute system DI function 1	ABSE	 When ABSE is on, servo will enter ABS mode and enable ABSQ, ABSC, ABSR, ABSD, ABSC. When ABSE is on, the functions of DI4,DO2,DO3 are no longer the ones assigned by the parameter. The DI4 function is changed to ASDQ, DO2 is ABSR, DO3 is ABSD. In addition, ABSC can be defined through parameters. 	ALL
Absolute system DI function 2	ABSC	To clear the stored revolution data in absolute encoder when ABSC is ON. And this input is only valid when ABSE is ON.	ALL

ABS hand- shaking signal (Note 1)	DI4. ABSQ is fixed to DI4	To use as th transmitted I that request ABSQ is ON ABSD data This input is	To use as the handshaking pin for I/O transmission, it is ransmitted by the controller. When ABSQ is OFF means hat request command issues by the controller; When ABSQ is ON means that the controller has finished the ABSD data processing. This input is valid only when DI ABSE is ON.								
Torque command	TC1	Torque	ue Input signal								
option 1		command NO#	TC2	TC1	source	Description					
Torque	TC2	T1	0	0	Analog command	The voltage between TC and LG(the range is ±10V)	т				
option 2		T2	0	1	Internal	PC75					
		Т3	1	0	register	PC76					
		Τ4	1	1	parameter	PC77					
Pt-Pr switch	Pt-Pr	Switch betw Pt-Pr=OFF: Pt-Pr= ON: I	Switch between Pt and Pr mode Pt-Pr=OFF: Pt mode Pt-Pr= ON: Pr mode								

Note 1: when DI ABSE is ON, the function of PD05 defined by parameter will be disabled and replaced by ABSQ, which is input by DI4.

DO wiring of CN1

DO function allows users to edit parameters by themselves, detail is in the following table.

Signal name	Code	Function	Control mode
Ready	RD	RD is on when servo is on and ready to operate.	ALL
Alarm signal output	ALM	ALM is off when power is off or activating protection circuit makes main circuit open.If no alarm occurs, ALM will be on 1 second after power is on.	ALL
In-position ready	INP	INP is on when the servo is in the setting in-position range. This range can be adjusted by parameter setting. When the in-position range setting is large, the INP may be kept conductive during low speed operation.	Pr, Pt
Speed attained	SA	SA is on when servo motor speed is nearly reached the setting. The SA keeps on when setting speed is 50r/min or below.	S
Home moving completion	HOME	Home is on after the completion of homing moving.	Pr
Torque limiting control	TLC	When the generated torque reaches the level set by internal torque limit(PA05) or analog torque limit(TLA), TLC is on. TLC turns off when SON is OFF.	Pr, Pt, S
Speed limiting control	VLC	In torque control mode, when the speed reaches internal speed command 1~7 or analog speed limit(VLA), VLC is on. VLC turns off when SON is off.	т
Electromagnetic brake interlock	MBR	If using the motor with electromagnetic brake, set its parameter to $\Box 1 \Box \Box$. MBR is off when servo is off or alarm occurs. MBR turns on when servo is ON.	ALL

Warning	WNG	WNG is on when a warning occurs.	ALL		
		When convolution rung below zero			
Zero speed		spood(50r/min) 7SP is on			
detection	ZSP	The zero speed range can be adjusted	ALL		
		hy parameter setting			
Pr command completion		When internal position command is			
output	CMDOK	completed or stopped, CMDOK is on.	Pr		
Overload output		When the motor reaches overload level	A I I		
warning	OLW	setting, the OLW is ON.	ALL		
Mation control		When both DO:CMD_OK and INP are			
	MC_OK	ON, MC_OK signal is on. Otherwise,	Pr		
completed		MC_OK is off.			
position command		The OVF signal is ON when the	Dr		
overflow	OVF	position command overflows.	rı		
Software		When the motor feedback pulse			
	S/V/DI	exceeds the software positive			
positive limit	SVVFL	limit(PF86) setting value, SWPL is ON.			
		Otherwise, SWPL is OFF.			
		When the motor feedback pulse			
Software	SWNL	number is less than the software	Dr		
negative limit		negative limit(PF87) setting value,	ΓI		
		SWNL is ON. Otherwise, SWNL is OFF.			
Absolute system		The related alarms of absolute encoder	ΔΤΤ		
Warning		will be output by ABSW.			
		When the servo is in control switching			
		mode, the current using control mode			
		(related to LOP) is displayed. The			
		display status is as follows:			
		1. When PA01= <u>XXX</u> 1,			
Control mode switch		LOPM off: position mode			
etatue	LOPM	LOPM on: speed mode	ALL		
Sialus		2. When PA01= <u>XXX</u> 3,			
		LOPM OFF: speed mode			
		LOPM ON: torque mode			
		3. When PA01= <u>XXX</u> 5			
		LOPM OFF: torque mode			
		LOPM ON: position mode			

Pt-Pr switch status	PtrM	It indicates the current switching status of Pt-Pr terminal: PtrM is OFF means Pt-Pr is OFF; PtrM is ON means Pt-Pr is ON.	Pt, Pr
When DI ABSE is ON, PD11 defined parameter function will be disabled and replaced by ABSR, which is output by DO2.	ABSR is fixed to DO2	When ABSR is OFF means the servo can accept the Request command of ABSQ; When ABSR is ON means the data has been prepared after receiving the Request command and the ABSD data is correct, and the controller can take away the ABSD data. The output is valid only when DI ABSE is ON.	ALL
When DI ABSE is ON, PD12 defined parameter function will be disabled and replaced by ABSD, which is output by DO3.	ABSD is fixed to DO3	It is output pin of ABS data, the data is guaranteed to be correct when ABSR is on. This output is valid only when DI ABSE is on.	ALL
Capture complete output	CAP_OK	The Capture function is executed successfully.	ALL
E-Cam designated area output 1	CAM_AREA1	To output the angle range specified by the E-Cam table.	Pr
E-Cam designated area output 2	CAM_AREA2	To output the angle range specified by the E-Cam table.	Pr
Software DO 1	S_DO0	To output bit00 of PD33.	ALL
Software DO 2	S_DO1	To output bit01 of PD33.	ALL
Software DO 3	S_DO2	To output bit02 of PD33.	ALL
Software DO4	S_DO3	To output bit03 of PD33	ALL
Software DO 5	S_DO4	To output bit04 of PD33	ALL
Software DO 6	S_DO5	To output bit05 of PD33	ALL
Software DO 7	S_DO6	To output bit06 of PD33	ALL
Software DO 8	S_DO7	To output bit07 of PD33	ALL
Software DO 9	S_DO8	To output bit08 of PD33	ALL
Software DO 10	S_DO9	To output bit09 of PD33	ALL

Software DO 11	S_DOA	To output bit10 of PD33	ALL
Software DO 12	S_DOB	To output bit11 of PD33	ALL
Software DO 13	S_DOC	To output bit12 of PD33	ALL
Software DO 14	S_DOD	To output bit13 of PD33	ALL
Software DO 15	S_DOE	To output bit14 of PD33	ALL
Software DO 16	S_DOF	To output bit15 of PD33	ALL

The terminal signal function of the CN1 changes according to the control mode. Please refer to the table below:

DI	Signal	Function	Pt	Pr	S	т	Pt-S	Pt-T	Pr-S	Pr-T	S-T
0x01	SON	Servo ON	DI1	DI1	DI1	DI1	DI1	DI1	DI1	DI1	DI1
0x02	RES	Reset	DI5	DI5	DI5	DI5	DI5	DI5	DI5	DI5	DI5
0x03	PC	Proportion control	DI3								
0x04	TL	Torque limit option	DI4		DI11		DI11	DI11			DI11
0x05	TL1	Inner torque limit option	DI11								
0x06	SP1	Speed option 1			DI6	DI6	DI2	DI2	DI11	DI11	DI6
0x07	SP2	Speed option 2			DI2	DI2					DI2
0x08	SP3	Speed option 3									
0x09	ST1	Forward rotation activated			DI3		DI3		DI3		
0x0A	ST2	Reverse rotation activated			DI4		DI4		DI6		
0x0A	RS1	Forward rotation option				DI4		DI4		DI6	DI4
0x09	RS2	Reverse rotation option				DI3		DI3		DI3	DI3
0x0B	ORGP	Origin position									
0x0C	SHOM	Start Home moving									
0x0D	CM1	Electronic gear option 1	DI2								

Recommended setting value for DI function.

0x0E	CM2	Electronic gear option 2									
0x0F	CR	Clear	DI6	DI6			DI6	DI6			
0x10	CDP	Gain switch option	DI12		DI12	DI12	DI12	DI12			DI12
0x11	LOP	Control mode switch	DI8		DI8						
0x12	EMG	External emergency stop	DI7								
0x13	POS1	Position command 1		DI2					DI2	DI2	
0x14	POS2	Position command 2		DI3					DI12	DI12	
0x15	POS3	Position command 3		DI8							
0x16	CTRG	Position command trigger		DI4					DI4	DI4	
0x18	LSP	Limit of forward rotation	DI9								
0x19	LSN	Limit of reverse rotation	DI10								
0x1A	POS4	Position command 4		DI11							
0x1B	POS5	Position command 5		DI12							
0x1C	POS6	Position command 6									
0x1D	INHP	Inhibit pulse input									

DI code	Signal	Function	Pt	Pr	s	т	Pt-S	Pt-T	Pr-S	Pr-T	S-T
0x1E	EV1	Event trigger Pr command									
0x1F	EV2	Event trigger Pr command 2									
0x20	EV3	Event trigger Pr command 3									
0x21	EV4	Event trigger Pr command 4									
0x22	ABSE	Absolute system DI function 1									
0x23	ABSC	Absolute system DI function 2									
0x24	STOP	stop command in Pr mode									
0x25	CAM	E-Cam engagement									
0x26	ALGN	E-Cam alignment.									
0x27	GRTY	Gantry synchronous switch									
0x28	FHS	Full- closed loop control switch									
0x29	FEC	Full-closed loop error clearance									
0x2A	MAP	Linear compensation switch									
0x2D	TC1	Torque command option 1									
0x2E	TC2	Torque command option 2									
0x2F	Pt-Pr	Pt-Pr switch									

Recommended setting value for DO function

DO code	Signal	Function	Pt	Pr	S	т	Pt-S	Pt-T	Pr-S	Pr-T	S-T
0x01	RD	Ready	DO5	DO5	DO5	DO5	DO5	DO5	DO5	DO5	DO5
0x02	ALM	Alarm signal output	DO6	DO6	DO6	DO6	DO6	DO6	DO6	DO6	DO6
0x03	INP	In-position ready	DO1	DO1			DO1	DO1	DO1	DO1	
0x03	SA	Speed attained			DO1		DO1		DO1		DO1
0x04	HOME	Home moving completion									
0x05	TLC	Torque limiting control	DO4	DO4	DO4		DO4	DO4	DO4	DO4	DO4
0x05	VLC	Speed limiting control				DO4		DO4		DO4	DO4
0X06	MBR	Electromagnetic brake interlock			DO3	DO3					DO3
0x07	WNG	Warning	DO3			DO1	DO3	DO3			
0x08	ZSP	Zero speed detection	DO2	DO2	DO2	DO2	DO2	DO2	DO2	DO2	DO2
0x09	CMDOK	Position command completion output		DO3					DO3	DO3	
0x0A	OLW	Overload output warning									
0x0B	MC_OK	Motion control completed									
0x0C	OVF	Position command overflow									

0x0D	SWPL	Software positive limit				
0x0E	SWNL	Software negative limit				
0x0F	ABSW	Absolute system warning(Delta)				
0x10	ABSV	Absolute system data vanish (Mitsubishi)				
0x11	CAP_O K	Capture complete output				
0x12	CAM_A REA1	E-Cam designated area output 1				
0x13	CAM_A REA2	E-Cam designated area output 2				
0x17	LOPM	Mode switch status				
0x18	PrtM	Pt-Pr switch status				

DO code	Signal	Function	Pt	Pr	S	Т	Pt-S	Pt-T	Pr-S	Pr-T	S-T
0x20	S_DO0	Software DO1									
0x21	S_DO1	Software DO2									
0x22	S_DO2	Software DO3									
0x23	S_DO3	Software DO4									
0x24	S_DO4	Software DO5									
0x25	S_DO5	Software DO6									
0x26	S_DO6	Software DO7									
0x27	S_DO7	Software DO8									
0x28	S_DO8	Software DO9									
0x29	S_DO9	Software DO10									
0x2A	S_DOA	Software DO11									
0x2B	S_DOB	Software DO12									
0x2C	S_DOC	Software DO13									
0x2D	S_DOD	Software DO14									
0x2E	S_DOE	Software DO15									
0x2F	S_DOF	Software DO15									

3.3.4 Interface wiring diagram

(1) DI in SINK type

(2) DI in source type

When using the source type of DI, all DI input signals are in source type. Output in source type is not available.

(3) Digital output(DO)

It can drive lamp, relay and photocoupler. When a relay is loaded, a diode is required, and when an external lamp is loaded, a resistor to suppress the surge current is required.

(Allowable current: 40mA or less, surge current: 100mA or less)

(4) Speed/torque analog input and MON1, MON2 analog output monitoring.

Note: **the upper limit of the VC and TC voltage is 10V**. If the voltage is too high, the internal transistor will be burned.

Note: the analog output voltage for MON1, MON2 is **±10V.**

(5) Encoder position output.
Encoder output type includes open collector type and line drive type. And only CN1-40(OP) provides open collector type output.

%The maximum input current of the pulse detection circuit for open-collector type is 35mA

%The maximum output current of the pulse detection circuit for differential type is 20mA

(6)Pulse command input

User can input the pulse command by open collector or line driver type. The maximum pulse input is 4 Mpps for the line driver type and the maximum pulse input is 200 kpps for the open collector type.

Note 1: It is recommended to use a shielded twisted-pair cable for PP-PG and NP-NG connection.

3.3.5 The specified DI and DO signal

The preset DI and DO signals of Shihlin Servo are the signals of the position mode. If the preset DI/DO signals are not expected function, or the control mode is changed by modified PA01 setting, you can redo the DI/DO signal setting. The function of DI1 ~ DI12 and DO1 ~ DO6 signal are defined by PD02~PD09, PD21~PD24, PD10~PD14 and PD26 separately. You can input the DI code or DO code in the corresponding parameters to set its function. Below table lists DI/DO signal, its corresponding CN1 Pin and parameters.

CN1	Pin	Signal name	Parameter
CN-	14	DI1	PD 02
CN-15		DI2	PD 03
CN-	16	DI3	PD 04
CN-	17	DI4	PD 05
CN-	18	DI5	PD 06
CN-	19	DI6	PD 07
CN-20		DI7	PD 08
CN-21		DI8	PD 09
CN-	22	DI9	PD 21
CN-23		DI10	PD 22
CN-	12	DI11	PD 23
CN-13		DI12	PD 24

DI

DO

CN1	Pin	Signal name Paramete	
CN-41		DO1	PD 10
CN-42		DO2	PD 11
CN-43		DO3	PD 12
CN-44		DO4	PD 13
CN-45		DO5	PD 14
CN-46		DO6	PD 26

3.4 CN2 encoder signal wiring and description.

The resolution of the Shihlin servo motor built-in encoder is 23&24-bit. its connector pin assignment and appearance are as below:

(1)CN2 connector(Female)

(2)CN2 connector(Male)

3M connector rear view

Connector side view

Molex connector rear view

Pin	Pin marking	Signal		
1, 3	Vcc(5V)	Encoder 5V power supply		
2	GND	Encoder ground terminal		
4	GNDB	Battery ground terminal		
5	Vcc(3.6V)	Battery 3.6V power		
6	ENCP	Encoder communication(+)		
7	ENCN	Encoder communication(-)		
8	CLKP	Linear motor EnDat 2.2 communication (note)		
9	CLKN	Linear motor EnDat 2.2 communication (note)		
10	NC			
Casing	Shielding	Shielding		

CN2 signal list of incremental/absolute encoder

Note: please refer to section 14.1 for the accessories required for linear motor EnDat 2.2. communication

3.4.1 Encoder connector specification

Drive capacity	Motor model	
10014/	SME-L005300000	
10000	SME-L010300000	(1)(2)(3)
200W	SME-=020300====	4)56
400W	SME – =04030 • = = =	$\overline{789}$
750W	SME-=075300===	

See the table below for the Shihlin servo capacity which is applicable to the quick connector:

Pin	Pin marking	Motor model
1		
2		
3	Vcc(3.6V)	Battery power 3.6V
4	GNDB	Battery ground terminal
5	ENCN	Encoder communication(-)
6	ENCP	Encoder communication(+)
7	Vcc(5V)	Encoder 5V power supply
8	GND	Encoder ground terminal
9	Shielding	Shielding

See the table below for the Shihlin servo capacity which applicable to the military connector:

Drive capacity Motor model		
11/10/	SME-H085150000	Н
	SME – 10020 • 100	// GOOOA
1.5KW	SME-=150200===	$\left\ \left(\begin{array}{c} I \\ \Box \\$
2KW	SME – 20020 •	
	SME-H130150000	
3KW	SME-H180150000	
	SME-0300200000	

Pin No.	Pin marking	Signal
Α	GNDB	Battery ground terminal
В	Vcc(5V)	Encoder 5V power supply
С		
D	ENCP	Encoder communication(+)
E	ENCN	Encoder communication(-)
F	GND	Encoder ground terminal
G		
Н	Vcc(3.6V)	Battery power 3.6V
I	Shielding	Shielding

See the table below for the Shihlin servo capacity which applicable to the military connector(400V):

Drive capacity	Motor model	
2KW	SMP−H18015∘	6000
ЗКW	SMP-H29015	$ \begin{pmatrix} & 8 & 9 & 10 \\ 0 & 0 & 0 & 0 \\ 4 & 5 & 6 & 7 \end{pmatrix} $
5KW	SMP−H44015∘□□□ SMP−H55015∘□□□	
7KW	SMP-H75015	

Pin No.	Pin marking	Signal
1	ENCP	Encoder communication(+)
2	ENCN	Encoder communication(-)
3		
4	Vcc(5V)	Encoder 5V power supply
5	GNDB	Battery ground terminal
6	Vcc(3.6V)	Battery power 3.6V
7		
8		
9	GND	Encoder ground terminal
10	Shielding	Shielding

- ★ Note: the wiring above is the connector from the motor itself.
- ★ Please refer to section 1.3.1 for description of ○□□□

The wiring ends of the drive and the motor are summarized as follows:

Drive terminals			Motor wiring ends		
Pin No.	Pin marking	Signal	Quick connector Pin No,	Military connector Pin No	Military connector(400V) pin No.
1, 3	Vcc(5V)	Encoder 5V power supply	7	В	4
2	GND	Encoder ground terminal	8	F	9
4	GNDB	Battery ground terminal	4	А	5
5	Vcc(3.6V)	Battery power 3.6V	3	Н	6
6	ENCP	Encoder communication(+)	6	D	1
7	ENCN	Encoder communication(-)	5	E	2
Casing	Shielding	Shielding	9		10

3.5 CN2L full-closed loop/linear scale signal and wiring description

If you need to use full-closed loop control or linear motor drive (using incremental optical scale, Hall sensor and temperature sensor), the pin number and appearance of the connector are as follows:

Pin definition of CN2L full-closed loop connector

CN2L Pin NO.	Pin marking	g Function	
1	Z	Z phase input	
2	/Z	/Z phase input	
3	В	B phase input	
4	/B	/B phase input	
5	А	A phase input	
6 /A		/A phase input	
7 GND		GND	
8 Temp+		Linear motor temperature detection(+)	
9 Temp- Lin		Linear motor temperature detection(-)	
10 HALL_U Hall sensor U phase input		Hall sensor U phase input	
11 HALL_V Hall sensor V phase input		Hall sensor V phase input	
12 HALL_W Hall sensor W		Hall sensor W phase input	
13	Vcc(5V)	+5V output	
14 GND		GND	

3.6 CN3 communication port signal and wiring description

CN3 is interface for RS-485 communication, you can connect the drive to PC and perform parameter setting, status monitoring, test operation and other actions by using Shihlin servo communication software. The CN3 provides RS-485 communication interface, which provides long-distance transmission and enables you to connect multiple servo drives simultaneously.

Definition of CN3 connection port

Pin NO	Pin marking	Function		
1	RS-485-B	Data are transmitted in differential line driver. Line driver B		
2	RS-485-A	Data are transmitted in differential line driver. Line driver A		
3	GND	Signal GND terminal		
4	GND	Signal GND terminal		

- 1. For RS-485 communication method, please refer to section 9.1.
- 2. Please confirm clearly that the RS485 pin number assignment of SDP servo is different from other Shihlin products.

3.7 CN4 USB communication port

Shihlin servo drive is equipped with USB communication slot(CN4) which is able to plug in and operate conveniently. Same as RS-485, you can connect CN4 to PC with Mini-USB cable and perform parameter setting, status monitoring, test operation and other actions by using Shilin servo communication software.

Mini-USB is a common component in the market and very easy to buy, which greatly increases the convenience.

The following table lists Mini-USB standard pin assignment

Pin NO	Pin function
1	+5V
2	D-
3	D+
4	NC
5	GND

3.8 CN5 battery connector of absolute encoder

When using the absolute servo motor, an external battery box for absolute encoder is required. CN5 is battery connector, you can set related parameter after the battery is connected.

The picture above is wrong

The following table shows the standard pin assignment of CN5.

Pin NO	Pin function	Description
1	Vcc(3.6V)	Battery 3.6V power
2	GND	Battery GND terminal

3.9 Standard wiring instruction

- Only qualified engineer can do the wiring.
- Do not wire within 20 minutes after turning off the power, check if there is any residual voltage by electric meter before wiring, otherwise it may cause electric shock.
- •The servo drive and servo motor must be well grounded.
- •Install the servo drive and motor before wiring, otherwise it may cause electric shock.

•Don't scratch or apply excessive stress on the cable, or hold it down by heavy objects.

DANGER

•The wiring should be correct, otherwise the servo motor is prone to CAUTION sudden unintended acceleration.

> •The terminals wiring should be correct, otherwise it may cause damage or abnormal operation.

•The polarity (+/-) must be correct, otherwise it may cause damage or abnormal operation.

•The polarity of the surge absorbing diode, which is installed on the output controlling DC relay, cannot be reversed, otherwise the alarm signal and emergency stop protection circuit will be disabled.

•The electric device nearby the servo drive may have electromagnetic interference, please use the EMI suppression filter to improve.

•Don't install in-phase capacitor, surge absorber, or EMI noise suppression in the power circuit of the servo motor.

•When using a regenerative resistor, you should switch off power by regenerative abnormal signal. Otherwise, it may cause a fire by the overheated regenerative resistor.

•Do not modify the servo drive or servo motor by yourself.

3.9.1 Position control mode(Pr Mode) wiring diagram

Note1: if external power supply is applied, do not connect VDD and COM+

Note2: please refer to user manual for description of regenerative resistor and brake control unit.

Note3: please refer to user manual for digital output DO sink type or source type wiring.

Note4: if HEIDENHAIN absolute communication protocol is applied, you should connect servo to all CN2 Pin6-9.

Note5: there is no L1,L2 for 440V system, please connect external DC24V power to the front panel +/- sign position.

3.9.2 Position control mode(Pt Mode) wiring diagram

Note1: if external power supply is applied, do not connect VDD and COM+ Note2: please refer to user manual for description of regenerative resistor and brake control unit. Note3: please refer to user manual for digital output DO sink type or source type wiring. Note4: if HEIDENHAIN absolute communication protocol is applied, you should connect servo to all CN2 Pin6-9. Note5: there is no L1,L2 for 440V system, please connect external DC24V power to the front panel +/- sign position.

Note1: if external power supply is applied, do not connect VDD and COM+

Note2: please refer to user manual for description of regenerative resistor and brake control unit.

Note3: please refer to user manual for digital output DO sink type or source type wiring.

Note4: if HEIDENHAIN absolute communication protocol is applied, you should connect servo to all CN2 Pin6-9.

Note5: there is no L1,L2 for 440V system, please connect external DC24V power to the front panel +/- sign position.

3.9.4 Torque control mode (T Mode)wiring diagram

Note1: if external power supply is applied, do not connect VDD and COM+ Note2: please refer to user manual for description of regenerative resistor and brake control unit. Note3: please refer to user manual for digital output DO sink type or source type wiring. Note4: if HEIDENHAIN absolute communication protocol is applied, you should connect servo to all CN2 Pin6-9. Note5: there is no L1,L2 for 440V system, please connect external DC24V power to the front panel +/ sign position.

3.9.5 1PG wiring diagram

Note3: please refer to user manual for regenerative resistor and brake control unit wiring. Note4: please refer to user manual for digital output DO of sink type or source type wiring.

3.9.6 10PG wiring diagram

Note1: if the DC24V power provided by PLC is applied, the VDD and COM+ cannot be short-circuited. Note2: due to A(F)X2N-10PG preset pulse type is negative logic/forward reverse pulse train, PA13 should set to 0010 if preset pulse type is applied.

Note3: please refer to user manual for regenerative resistor and brake control unit wiring. Note4: please refer to user manual for digital output DO of sink type or source type wiring.

3.9.7 10GM wiring diagram

Note1: if the DC24V power provided by PLC is applied, the VDD and COM+ cannot be short-circuited. Note2: due to A(F)X2N-10GM preset pulse type is negative logic/forward reverse pulse train, PA13 should set to 0010 if preset pulse type is applied.

Note3: please refer to user manual for regenerative resistor and brake control unit wiring.

Note4: please refer to user manual for digital output DO of sink type or source type wiring.

3.9.8 20GM wiring diagram

Note1: if the DC24V power provided by PLC is applied, the VDD and COM+ cannot be short-circuited. Note2: due to A(F)X2N-20GM preset pulse type is negative logic/forward reverse pulse train, PA13 should set to 0010 if preset pulse type is applied.

Note3: please refer to user manual for regenerative resistor and brake control unit wiring. Note4: please refer to user manual for digital output DO of sink type or source type wiring.

3.9.9 FX3U wiring diagram

Note1: if the DC24V power provided by PLC is applied, the VDD and COM+ cannot be short-circuited. Note2: due to FX3U-MT host pulse type is negative logic forward /reverse pulse train, PA13 should set to 0010 if this pulse type is applied.

Note3: please refer to user manual for regenerative resistor and brake control unit wiring.

Note4: please refer to user manual for digital output DO of sink type or source type wiring.

3.9.10 QD75 wiring diagram

Note1: if the DC24V power provided by PLC is applied, the VDD and COM+ cannot be short-circuited. Note2: if QD 75D/QD 75P use pre-set pulse type, set PA13 to 0000.

Note3: if QD75P is applied, OPC need to provide DC24V power.

Note4: please refer to user manual for regenerative resistor and brake control unit wiring.

Note5: please refer to user manual for digital output DO of sink type or source type wiring.

4. Panel display and operation

This chapter describes the panel display of Shihlin Servo Drive and its operation instructions.

4.1. Panel description

Name	Function				
Display	5-digit, 7-segment LED displays the monitoring values,				
	parameter numbers, setting values, etc.				
	It switches the display among monitoring mode, parameter				
MODE key	mode, and alarm mode. When writing parameter, this key is use				
	as shift function.				
UP key	scroll up the parameter code or setting value.				
Down key	scroll down the parameter code or setting value.				
SET Key	displays and stores the parameter setting value.				
Charge LED	The Charge LED indicator is on when the power is applied to the				
indicator	circuit.				

4.2. Display procedure

The display on the front of the SERVO AMP displays servo status, performs parameter modification, etc. You can perform parameter setting, abnormal diagnosis, the external control and operation status check.

Press MODE, UP, DOWN key once to scroll down to the next display page.

The display process of servo panel is as follows

Panel d	lisplay process	Initial screen	Function	Reference
	Status display		Status monitoring. This field is displayed after the power is turned on.	Section 4.3
	Alarm display		One-touch gain tuning function	Section 4.4
	Diagnosis		Alarm display	Section 4.5
MODE	Basic parameter Gain filter parameter	<u>- 4 - a </u> -	In diagnosis mode, it displays external IO signal, DO force output, JOG operation, test positioning, VC automatic deviation correction, firmware version and so on.	Section 4.6
	DI/DO setting		Displays and sets the basic parameters.	
	Pr path		Displays and sets the gain filter parameter.	Section
	Pr path		Displays and sets <u>extension</u> parameters	4.7
	Linear motor parameter		Displays and sets DI/DO setting parameter	

	Displays and sets Pr path parameter 1.	
	Displays and sets Pr path parameter 2.	
	Displays and sets Linear motor parameters.	

4.3. Status display

- The servo operation status displays on the 5-digit 7-segment LED display.
- Press the UP and DOWN keys to change the displayed value.
- When the power is applied, select the sign on panel and press the "SET" key to display its data.
- The display part of 7-segment LED can display the last 5 digits of the 16 items data, such as motor rotation speed.
- If the value is 5 digits, its negative value is displayed by the 5 lightening up decimal points. If the value is 4 digits or less, its negative symbol is displayed on the leftmost of LED.
 - Examples

Examples are listed in the following table:

ltow	Chattura	Display method	
Item	Status	7-segment LED display	
Motor rotation anod	Forward rotation at 2500r/min		
Motor rotation speed	Reverse rotation at 3000r/min	- 3000	
Load to motor inertia ratio	15.5times		
Motor feedback pulse number(High 5-digit)	The value is 1234567890 High 5-digit → 1234.5		
Motor feedback pulse number(low 5-digit)	The value is 1234567890 Low 5-digit → 67890.		
Parameter wring completed	Write successfully		
Parameter wring failed	Writing fail when servo is on(SON on)	Rewrite after turning the SON off.	
Parameter writing value is out of range	Parameter writing value is out of range		

	Rewrite parameter setting value.

PS : for detailed numerical display, please refer to the parameter numerical display example in section 4.7.

Note: when setting the panel parameters, each parameter has the upper and lower limits.

- (a) When the decimal data is modified, the modification should be within the upper and lower limits.
- (b) When the hexadecimal data is modified, each Hex value has its upper and lower limits.

Status overview

The servo status are as follows:

Status display	Symbol	Unit	Content	Displayabl
Status display		Onit	Content	e range
Motor feedback			Motor feedback pulse number (High	
pulse number			5-digit)(before E-Gear ratio)	-21474
(High 5-digit)	ГРП.І	puise	Ex: if the value is 123456789 pulse, it	~21474
(before E-Gear ratio)			displays 1234 (Note 1).	
Motor feedback			Motor feedback pulse number (low	
pulse number		nulaa	5-digit)(before E-Gear ratio)	-99999
(low 5-digit)	FPL.I	puise	Ex: if the value is 123456789 pulse, it	~99999
(before E-Gear ratio)			displays 56789 (Note 1).	
Input number of			Pulse number of commands input	
pulse commands	CPH.I	.I pulse	(High 5-digit) (before E-Gear ratio)	-21474
(High 5-digit)			If the value is 123456789 pulse, it	~21474
(before E-Gear ratio)			displays 1234 (Note 1).	
Input number of			Input number of pulse commands (low	
pulse commands		nulaa	5-digit) (before E-Gear ratio)	-99999
(low 5-digit)	CPL.I	puise	Ex: if the value is 123456789 pulse, it	~99999
(before E-Gear ratio)			displays 56789 (Note 1).	
			Deviation number between command	
Deviation pulse			input pulse and feedback pulse (before	00000
number	E. I pulse	E-Gear ratio)	-99999	
(before E-Gear ratio)		It displays the last 5 digits of the actual	~33333	
			value.	

Motor feedback			Motor feedback pulse number (High	
pulse number			5-digit) (after E-Gear ratio)	-21474
(High 5-digit)	FPH.O	FPH.O pulse	If the value is 123456789 pulse it	~21474
(after E-Gear ratio)			displays 1234 (Note 1).	
Motor feedback			Motor feedback pulse number (low	
pulse number			5-digit)(after E-Gear ratio)	-99999
(low 5-digit)	FPL.O	pulse	Ex: if the value is 123456789 pulse, it	~999999
(after E-Gear ratio)			displays 56789 (Note 1).	
Input number of			Input number of pulse commands (high	
pulse commands			5-digit) (after E-Gear ratio)	-21474
(high 5-digit)	CPH.O	pulse	If the value is 123456789 pulse, it	~21474
(after E-Gear ratio)			displays 1234 (Note 1).	
Input number of			Input number of pulse commands (low	
pulse commands			5-digit) (after E-Gear ratio)	-99999
(low 5-digit)	CPL.O	pulse	If the value is 123456789 pulse, it	~99999
(after E-Gear ratio)			displays 56789 (Note 1).	
· · · · · · · · · · · · · · · · · · ·			Deviation number between command	
Deviation pulse			input pulse and feedback pulse (after	
number	E. O	pulse	E-Gear ratio)	-99999
(after E-Gear ratio)		•	It displays the last 5 digits of the actual	~99999
			value.	
Command input			External command input pulse	-6000
pulse frequency	CPF	KHZ	frequency.	~6000
		rotary		
		motor		
Current motor speed	_	rpm		-6000
	ſ	linear	Displays current motor reedback speed.	~6000
		motor		
		mm/s		
Analog anood			(1) Speed mode: it displays the input	
Analog speed	F	V	voltage of analog speed command.	-10.00
	Г	v	(2) Torque mode: it displays the input	~+10.00
voltage			voltage of analog speed limit.	
		rotary	(1) Speed mode: it displays analog input	
Speed input		motor	speed command.	-6000
Speed input command/limit	V	rpm	(2) Torque mode: it displays analog input	-0000
	linea	linear	speed limit.	~0000
		motor		

		mm/s		
Analog torque command/limit	U	V	 (1) Position mode, speed mode: it displays voltage of analog torque limit (TLA) (2) Torque mode: it displays voltage of 	0 ~ +10.00
voltage			analog torque command.	~10.00
Torque command/limit	TC	%	(1) Position mode, speed mode. It displays rated analog torque command/limit.	0~300
			(2)Torque control mode It displays analog torque command.	-300~300
Effective load rate	J	%	It indicates the load ratio of continuous torque, and take rated torque as 100%.	0~300
Peak load rate	b	%	It displays the maximum generated torque value in the past 15 seconds, and take rated torque as 100%.	0~300
DC bus voltage	Pn	V	It displays the voltage between main circuit P-N. If the voltage between P-N is lower than the level that the servo can operate normally, the panel displays Lo-dC.	0~500
Load to motor inertia ratio	dC	rotary motor times linear motor Kg	Rotary motor: it displays load/motor inertia ratio. Linear motor: It displays load /linear motor mover + a total weight of load.	0.0~300.0
Instantaneous torque	т	%	It displays the Instantaneously generated torque. Taking the rated torque as 100%, the generated torque is displayed in real time.	0~100
Regenerative load ratio	L	%	It indicates the power ratio of allowable regenerative power in %.	0~100
Feedback pulse number of full-closed loop encoder	FFH	pulse	It indicates feedback pulse number of full-closed loop encoder (high 5-digit) If the value is 123456789 pulse, it	-21474 ~21474

(high 5-digit) (after E-Gear ratio)			displays 1234 (Note 1).	
Feedback pulse number of full-closed loop encoder (low 5- digit) (after E-gear ratio)	FFL	pulse	It indicates feedback pulse number of full-closed loop encoder (low 5-digit) If the value is 123456789 pulse, it displays 56789 (Note 1).	-99999 ~99999
Pulse number of full- closed loop command (high 5-digit) (after E-gear ratio)	FCH	pulse	It indicates pulse number of full-closed loop command(high 5- digit) If the value is 123456789 pulse, it displays 1234 (Note 1).	-21474 ~21474
Pulse number of full- closed loop command (low 5- digit) (after E-gear ratio)	FCL	pulse	Pulse number of full-closed loop command(low 5-digit) If the value is 123456789 pulse, it displays 56789 (Note 1).	-99999 ~99999
The absolute pulse number relative to encoder Z phase	ZP	pulse	The absolute pulse number relative to encoder Z phase, and Z phase is 0. It is +5000 or -4999 pulses when the motor rotates in the forward or reverse direction as below picture shows:	-4999 ~5000
Drive capacity buffer (residual current)	drC	A	It shows the remaining current value of the drive.	0 ~ the maximum output current of this drive

Note 1: when the panel is at value displaying screen, , if you press the SET key, Input number of pulse commands (before or after E-Gear ratio), feedback pulse number, and pulse deviation will be cleared, and this definition is same as the content of communication address 0x0951.

Change of status on display

By changing PA01, the 7-segment LED status display items can be changed when the power is on. The initial status display items are changed as follows according to the control mode.

Control mode	Description				
Position	Motor feedback pulse number (low 5-digit)				
Position/Speed	Motor feedback pulse number (low 5-digit) / Current motor speed				
Speed	Current motor speed				
Position/torque	Current motor speed / Analog torque command limit voltage				
Torque	Analog torque command limit voltage				
Torque/position	Analog torque command limit voltage / motor feedback pulse number				
	(low 5-digit)				

4.4. One-touch Tuning Function

Name	Panel display	Content
One-touch Tuning		One-touch tuning function can be operated when the servo is on this screen. You can refer to section 5.3.2 for detailed content.

4.5. Alarm mode

It shows current alarm and the alarm record. The last 2 digits indicate the Alarm NO.

Name	Panel display	Content
Current alarm		No alarm occurs.
		The screen will blink when an over-voltage alarm occurs(AL.01).
Alarm record	80 01	The last alarm in the past is over-voltage (AL.01).
	50 / A	The 2nd alarm in the past is low-voltage (AL.02).
	82 83	The 3rd alarm in the past is over-current (AL.03).
	83 84	The 4th alarm in the past is regenerative abnormal (AL.04)
	84 85	The 5th alarm in the past is overload (AL.05).
	85 85	The 6th alarm in the past is over speed (AL.06).
		The 7th alarm in the past is abnormal pulse control (AL.07).
		The 8th alarm in the past is excessive position deviation (AL.08).
	88 89	The 9th alarm in the past is serial communication abnormal (AL.09).
		The 10th alarm in the past is overload 2 (AL.10).

Function of panel display when alarm occurs

A: the screen can show the current alarm in any mode.

B: other contents can still be displayed when an alarm occurs, Its fourth LED decimal point will blink(count from the right side) in this case.

C: the alarm can be cleared by one of the following methods after the cause is eliminated

- (a). Restart the power.
- (b). Press SET key at the current alarm screen.
- (c). Turn on the reset signal(RES).

D: use UP or DOWN key move to the next alarm record.

4.6. Diagnosis mode

The Diagnosis operation is introduced in the following table.

ltem	Screen display	Content
		Servo is not ready yet and RD terminal is off.
	rd-of	This screen displays when the servo is initializing,
		alarm occurs, or SON terminal is off, and RD terminal
Control status		is off.
	rd-on	Servo is ready.
		When servo is on and ready to operate, or when RD
		terminal is on, this screen is displayed.
		It indicates the ON/OFF status of external I/O.
External I/O		The upper part of each segment shows the input
signal indication		signal, and the lower part shows the output signal.
		The I/O signal can be changed by PD02~PD09.
DO forced		DO signal can be forced ON/OFF.
output		
JOG test		When there is no command from an external device,
operation		JOG operation can be executed.
		When there is no command from external devices,
Desitioning test	56555	positioning operation can be executed. This
		operation cannot be performed with the display
operation		panel, it need connect to the communication
		software by RS-485/USB to test.
Inertia		This function can perform automatically estimate the
estimation test	╎┝╹╎╶┨	load inertia ratio and the related gain value.
operation		This operation cannot be performed with the display
		panel, it need connect to the communication software by RS-485/USB to test.
--------------------------------	-------	--
Auto-offset of analog input	H {	 When you set the analog speed command or analog speed limit, the voltage is adjusted to 0V by the external analog circuit and motor is still rotating slowly, which will automatically set offset value. When using this function, PC 26 will be automatically set to the auto-adjusted value. Please follow the following steps to operate: 1). Enter the automatic offset screen of the diagnosis mode. 2). Press the SET key. 3). Press the UP / DOWN key and select 1 4), Press SET key.
Software version(Low)	SG100	It indicates the master version of the SERVO software
Software version(High)	ХХ	It indicates the subversion of SERVO software.

The use of the diagnosis mode will be introduced in detail as follows

4.6.1. External I/O signal indicator

This display is to check the ON/OFF status of SERVO AMP digital I/O signals.

(1) Operation

It indicates the screen after power-on. You can switch to diagnostic screen by pressing MODE key.

It use 7-segement LED ON/OFF status to indicate. The upper part of each segment is the input signal (DI1~DI10), and the lower part is the output signal (DO1~DO6, OP) and the input signal DI11, DI12. Take the above picture as example, DI1~ DI8, DO1~DO5 are in ON status, DI9~DI12, DO6 and OP are in OFF status.

4.6.2 DO Forced output

The output signals which does not affect SERVO status can be forced ON/OFF. This function is applicable in output signal wiring inspection, etc.

- ★ Ensure that no alarm occurs and there is no external command.
- ★ Ensure that SON-SG is open-circuited when testing.

Operation

It indicates the display screen after power-on. You can switch to diagnostic mode by pressing MODE key.

4.6.3 JOG operation

- ★ JOG operation can be performed when no alarm or warning message occurs.
- ★ Ensure that SON-SG is open-circuited when testing.
- ★ Ensure that EMG, LSP, LSN are all on , and if CN1 has no external wiring, you can perform this function by using PD01.

Set JOG speed command by PC04, and set the acceleration time constant by PC01 and the deceleration time constant by PC02. Below picture shows the display screen after power-on. Please select JOG operation, test positioning operation, test estimation inertia analysis operation in following sequence and press the MODE button to show the diagnosis screen.

(1) Operation and Running.

To perform JOG operation, you should short the circuit between VDD and COM+ if internal power supply is used between EMG-SG.

Press and hold the UP/DOWN button to start the servo, and release it to stop. The setting is described in the following table:

ltem	Setting value	Default value	Setting range	
Rotation speed		200	0,6000	
[r/min]	PC04	300	0~6000	
Acceleration				
and		200	0~20000	
deceleration	PC01, PC02			
time constant				

<u>Note</u>: the JOG speed setting value of the panel is set by PC04.

Button description is as follows:

Button	Content
"UP"	Press and hold UP button to run in CCW direction. Release it to stop.
"DOWN"	Press and hold DOWN button to run in CW direction. Release it to stop.

(2) Status display

To verify the SERVO status during JOG operation.

When JOG operation is ready, if you press the MODE button, the status screen will be displayed. You can press UP/DOWN button to execute JOG. Pressing MODE button once will display the next screen and the screen will switch back to JOG operation screen after one cycle. Refer to section 4. 3 for status display details.

In JOG operation mode, the UP/Down button cannot change status display.

(3) JOG operation completion

During JOG operation, you can turn off the power once or press and hold the SET button in the test operation screen for more than 2 seconds to exit the JOG operation,

	(
		¥

Please refer to the description of step 3 in section 5.2.1 to understand how to use Shihlin

servo PC software to operate the JOG function.

4.6.4 Positioning test operation

- ★ Before using the positioning test operation, the servo should connect to the Shihlin communication software via RS-485 or USB.
- Positioning test operation can be performed only when there is no external command and no alarm occurs.
- ★ Ensure SON is OFF during test.

- ★ The motor will stop suddenly if the communication cable falls off during operation.
- ★ When the communication software enters the positioning test mode, the panel is showing the following figure:

----this screen display means the servo enters test positioning mode. ______LED blinks

Refer to section 5. 2. 2 for detailed positioning test operation instruction

4.6.5 Auto-offset of analog input

When the external analog speed command input is 0V, there may still have offset left which rotate the motor slowly. The user can enter the diagnostic mode and select the auto-offset of analog input function to automatically adjust the voltage offset. Please follow the following steps to operate:

After the auto-offset setting is completed, the parameter automatically writes to PC26.

4.6.6 Inertia estimation and tuning by communication software

- ★ Before performing the positioning test operation, the servo must connect to the Shihlin communication software via RS-485 or USB.
- Positioning test operation can be performed only when there is no external command and no alarm occurs.

Operation. Running

When using inertia estimation operation, ensure the motor is correctly wired and select Auto-gain adjustment function in Shihlin communication software.

The instruction for auto-gain adjustment function is as follows:

- (1) Click [Enable Auto-gain Control Panel].
- (2) Set speed acceleration time, deceleration time, S-curve acceleration and deceleration time and JOG speed.
- (3) If no alarm occurs, Click [Setup] to write the setting value of step (2) to the drive.
- (4) Click [Servo ON] and the servo motor will be ON.
- (5) Press JOG <u></u>button to rotate the motor reversely. Release it to stop the motor.
- (6) Press JOG \rightarrow button to rotate the motor forwardly. Release it to stop the motor.
- (7) To perform the response setting. The larger the value, the stronger the gain, which has the same function as PA03.
- (8) To show the current feedback position of the motor.
- (9) To control the motor to run forwardly or reversely. After the motor reaches the first target position, press position 1 and then press JOG, Set position 2 when the motor is in the 2nd target position, and the software will record the 2 target position.
- (10) The time interval is the static time after each positioning stops.
- (11) After setting target position 1, target position 2, and time interval, Press [Start] (S) and motor runs between position 1&2 cyclically.
- (12) After the motor runs a few operation cycles, the current "load inertia ratio" will be estimated and "bandwidth" value will be displayed.
- (13) To display the current alarm status. If there is no alarm, it shows No Alarm, if there is an alarm, it shows the current alarm number.
- Caution

(a) During operation, you can directly set the response in the response setting menu if the response is not enough, but it is recommended not to set the response too large instantly, and it should increase gradually.

(b) To judge whether the load inertia ratio has reduced, or the machine features have satisfied the user's requirement, you can press stop to complete the preliminary inertia estimation and gain adjustment.

(c) You can cancel the automatic gain control panel option or close the window form directly to exit. And the PC software will write the estimated load inertia ratio and response setting values to PB06 and PA03 respectively.

The servo will calculate the best gain value automatically after gain estimation. The following table is the estimation item.

Name	Parameter abbreviation	Parameter code	Setting range	Unit	Default value	Control mode
Resonance						
suppression	NLP	PB03	0~10000	0.1ms	10	Pt,Pr,S,T
low-pass filter						
Position						
feed-forward	FFC	PB05	0~200	%	0	Pt,Pr
gain value						
Servo motor load	GD1	PBOG	0.1200	0 1time	70	Dt Dr S
inertia ratio	GDT	1 800	0~1200	0. rume	70	11,11,0
Position loop	PC1	DB07	4.1024	rad/e	45	Dt Dr
gain	FGI	F B07	4~1024	Tau/S	45	Г (, Г Г
Speed loop gain	VG1	PB08	40~9000	rad/s	183	Pt,Pr,S
Speed integral	VIC	DDOO	1 1000	ms	34	Pt,Pr,S
gain value	VIC	LD09	1~1000			

★ When the communication software enters the inertia estimation and analysis mode, the panel will display the following figure:

---- This screen display means the servo enters inertia estimation/analysis mode

LED blinks

4.7. Parameter mode

4.7.1 16 bit parameter setting instruction

Some parameter changes become valid only after power cycling

(1) Operation instruction

The following is an example to illustrate the operation method after power cycling when the control mode (PA01) is changed to speed control mode.

Example 1: control mode(PA01)changes to speed control mode.

Press MODE button to switch to PA01 parameter.

Press UP/DOWN to move to next parameter.

When changing PA01, changed setting is activated only after power cycling.

• The MODE key is use as shift function when setting the parameters.

Next section will introduce how to use the MODE, UP and DOWN buttons to operate.

4.7.2 32 bit parameter setting instruction

• Decimal parameter reading and writing method (positive number)

For example: PA19 = 1234567, you can follow below steps to change the parameter value to 1434567.

• Decimal parameter reading and writing method (negative number)

For example: PA19 = 1234567, you can follow below steps to change the parameter value to -1234567.

PA19 value is 1234567

The display shows the low 5-digit data, and the lighting 5th decimal point means low 5-digit data is displaying

The display shows the high-bit data, and the 4th decimal point LED means the high-bit data is displaying

Press SET button once

The rightmost 7-segment display flicks

The high 5-digit data shows -12.

One Press MODE button once

The low 5-digit data shows -34567, and the leftmost 2 decimal point indicates the negative sign.

Back to PA group menu screen

• Hex parameter reading and writing method

For example, PE01 = 0x03760135, you can follow below steps to change the parameter value to 0x03740135

Example of parameter value display

ltom	Description	Display	
nem	Description	in 7-segment LED display	
	Hexadecimal display if value is 0x1234, 1234 will be displayed.	HEX HEX	
16 bit data	Decimal positive number display if value is 2500, 2500 will be displayed.	Positive DEC	
	Decimal positive number display if value is -12566,1.2.5.6.6. will be displayed	Negative DEC	
	Hexadecimal display	HEX high word	
32 bit - data	1234, and the low word shows 5678,	HEX low word	
	Decimal positive number display If the value is 1234567890, the high 5-digit shows 1234.5, and low 5-digit shows 67890.	Positive DEC high 5-digit	
		ETERE Positive DEC low 5-digit	
	Decimal negative number display method (1) if the data value is −1234567890, the high 5-digit	Negative DEC high 5-digit	
	shows 1.2.34.5 and the low 5-digit shows 6.7.890.	E TEER Negative DEC low 5-digit	
	Decimal negative number display method (2)	Alignment Negative DEC high 5-digit	
	if the data value is −34567890, the high 5-digit shows -34.5, and the low 5-digit shows 6.7.890.	E TEEE Negative DEC low 5-digit	

Note1: Dec means decimal display, Hex means hexadecimal display.

Note 2: there is no sign in hexadecimal display.

4.7.3 Other precautions

(1). When the screen is in the PA~PL group, after holding the UP or DOWN button for 0.8 seconds, the panel display (PA XX) can quickly go up or down with 0.15s cycle time.

(2). When using the communication software to perform JOG, positioning test, and DO forced output functions, the panel screen should be displayed synchronously. If you have questions on this operation, you can use SDH to test.

5. Running operation

5.1. Check items Before Running

Check carefully on below listed items before the motor runs, this is to avoid unnecessary damage to the motor when applying power to servo motor.

- Check if the servo drive power terminals (R,S,T,L1,L2) wiring are correct.
- Servo motor power terminals (U,V,W) and servo drive U, V, W wiring phases must be consistent.
- Check if the ground terminal of the servo drive is correctly wired.
- Check if there is any conductive material or inflammable material inside or near the drive.
- Check if the voltage level of external power is correct.
- Check if the control switch is OFF.
- Do not put heavy staff on the drive or on its wiring.
- Use twisted cable for the regenerative resistor wiring.
- Check for any obvious visible damage.

•Do not operate the switch with wet hands, otherwise it may cause electric DANGER shock.

•Check each parameter before running. Otherwise, there may be unexpected actions occurs.

•Do NOT touch the heat sink, regenerative resistor, servo motor and other components during running or soon after the power is turned off, because it may get hot and cause injury.

5.2. Test without load

Before you perform test without load, first remove the load of the servo motor (including the unit, coupling on the shaft, accessories, etc.). After all the load is removed, first check if the motor can run normally by normal operation procedure. And then connect to all the load back. The following introduces the motor test without load.

5.2.1. JOG test without load

- ★ JOG operation is available only when no alarm occurs.
- ★ Ensure that SON-SG is open-circuit (SON OFF) when testing.
- ★ Ensure that EMG, LSP, LSN are on , and if CN1 has no external wiring, you can perform this function by using PD01.

JOG without load can be performed by the panel or Shihlin communication software, it is to confirm whether the speed and direction of motor are as expected. You cannot modify the motor speed by the panel during JOG test, JOG test and its speed can only be modified by Shihlin communication software via RS-485 or USB transmission, and it is recommended to run JOG test at low speed. Below introduces JOG test of panel screen operation.

Step 1: connect servo drive and motor correctly, and then apply power to the servo drive.

Step 2: press the MODE button on the panel to enter the diagnosis screen, and then press the UP button 3 times to enter TEST1 (JOG mode). At this time, press and hold SET button for 2 seconds to switch to d-01. screen (JOG test operation).

Step 3: during JOG test, press the UP key to run the motor in CCW direction, and press DOWN key to run the motor in CW direction. Release the key to stop. and you can set PC04 to modify the JOG speed.

Note: when using Shihlin communication software to perform JOG test, the setting value and range are as follows:

Jog Test				- • ×
Motor Speed:	200	200 rpm 😋		Forward
	[1-6000]		9	Reverse
Accel/Decel Time:	1000	ms		
	[0-20000]		8	Close
				?

Precaution: when using the communication software for JOG test, if the communication cable is disconnected during operation, the servo motor will decelerate to stop.

The button operation description is as follows:

Button	Function
Forward	Press the button and runs the motor in CCW
Reverse	Press the button and runs the motor in CW
Close	To finish JOG test

Step 4: if the JOG operation is completed, turn off the power once or hold the SET button for more than 2 seconds in the test operation screen (d-01.) to exit the JOG operation mode.

5.2.2. Positioning Test without load

You should use Shihlin communication software which is connect by RS-485 or USB to do positioning test without load, which is to confirm whether the speed and direction of rotation are as expected, it is recommended to perform this operation at a low speed. You need set the number of revolutions and pulses for positioning test. For example, as the motor takes 22-bit pulse(that is 4194304 pulse) to rotate 1 circle, to set 10 and 1/2 circles, the pulse number setting should be 44040192 pulse. The following explains positioning operation:

- Step 1: connect the servo drive and servo motor correctly, and then apply power to the servo drive.
- Step 2: connect the computer and the CN4 of the servo drive with a standard Mini USB cable. Select the USB communication and its correct device number by Shihlin communication software.
- Step 3: select Test/Positioning Test button on the top of the communication software and enter the positioning test screen.
- Step 4: perform positioning test. You should set the number of revolutions and pulses firstly. Servo motor runs in the CCW direction to the target number of revolutions and pulses by pressing Forward button. and the servo motor runs in the CW direction to the target number by pressing Reverse button. The initial condition and setting range are as follows:

Position Test				
Motor Speed:	200 [1-6000]	rpm	G	Forward
Accel/Decel Time:	1000 [0-20000]	ms	9	Reverse Pause/Clear
Move Distance Pulse				
0 [0~2147483647]		?) 🛛	Close

Description of buttons are as below:

Button	Content	
	Press it once, the motor will run in CCW direction	
"Forward"	until reaches target number of revolutions and	
	pulses.	
	Press it once, the motor will run in CW direction until	
"Reverse"	reaches target number of revolutions and pulses.	
	number.	
	Press it once, the motor will stop temporarily if the	
	motor does not reach the target number of	
	revolutions and pulses. If you press the button again,	
Pause/clear	the motor will run the remaining numbers of	
	revolution and pulses.	
	If you press the suspend button twice, the remaining	
	number of revolution or pulse will be cleared.	
Close	To finish positioning test	

Step5: when positioning operation is finished, you can press the CLOSE button to exit.

5.3. Tuning procedure.

•Do not execute extremely adjustment and change on parameters, otherwise it may cause unstable action,

5.3.1. Tuning method and type

By the auto gain tuning function, the load inertia can be estimated quickly and accurately, and the appropriate servo gain under different loads can also be quickly searched. If the auto gain tuning mode cannot meet the target, manual tuning mode can be used.

Tuning mode	PA02 Parameter setting	Load inertia estimation method	Auto-estimate parameters	User-defined parameters
Manual gain tuning mode(Pl control)	0000 0001	Fixed as value of PB06		GD1(PB06) PG1 (PB07) VG1 (PB08) VIC (PB09)
Auto- gain tuning mode 1	0002	Continuously estimation	GD1(PB 06) PG1 (PB07) VG1 (PB08) VIC (PB09)	ATUL(PA 03)
Auto-gain tuning mode 2	0003	Fixed as value of PB06	PG1 (PB07) VG1 (PB08) VIC (PB09)	ATUL(PA03) GD1(PB06)
Interpolation mode 1	0004	Continuously estimation	GD1(PB 06) VG1 (PB08) VIC (PB09)	ATUL(PA03) PG1 (PB07)
Interpolation mode 2	0005	Fixed as value of PB06	VG1 (PB08) VIC (PB09)	ATUL(PA03) GD1(PB06) PG1 (PB07)

The description of gain tuning mode are as follows:

PA02 cannot be written when SON-SG is short-circuited, you need make SON-SG open-circuited before setting.

Start YES Two-axis or multi-axis NO YES Load changes enormously NO One touch tuning Error disposal YES NO NO Execution completed Processing error Auto tuning mode1 Interpolation mode YES YES Target achieved NO Auto tuning mode2 YES Target achieved NO NO Target achieved Manually gain tuning YES mode Finish

Please refer to below recommended tuning procedure and mode.

If the servo is in first use after installation, a JOG test is required to confirm no abnormal issue

before using the auto-tuning function.

When operating in auto-tuning mode, the servo needs to generate several acceleration/ deceleration commands. After the inertia ratio estimation is driven to a steady state, the inertia ratio estimation and the bandwidth searching can be performed.

5.3.2. One-touch Tuning Function

You can use communication software or panel to perform one-touching tuning function. The relevant parameters which can automatically set by the one-touch tuning function are shown in the table below:

Parameter	Parameter	
NO	abbreviation	parameter name
PA03	ATUL	Auto-tuning response level setting
PB01	NHF1	Frequency of machine resonance suppression filter 1
PB02	NHD1	Machine resonance suppression attenuation 1
DD02		Time constant of Resonance suppression low-pass
PDU3	INLP	filter
PB06	GD1	Servo motor Load inertia ratio
PB07	PG1	Position loop gain
PB08	VG1	Speed loop gain
PB09	VIC	Speed integral gain
PB21	NHF2	Frequency of Machine resonance suppression filter 2
PB22	NHD2	Machine resonance suppression attenuation 2
PB27	ANCF	Auto resonance suppression mode
PB28	ANCL	Resonance suppression detection level
PB29	AVSM	Auto low-frequency vibration suppression mode
PB30	VCL	Low-frequency vibration detection level
PB31	VSF1	Low-frequency vibration suppression frequency 1
PB32	VSG1	Low-frequency vibration suppression gain 1
PB33	VSF2	Low-frequency vibration suppression frequency 2
PB34	VSG2	Low-frequency vibration suppression gain 2
PB35	FRCL	Friction compensation level
PB36	FRCM	Friction compensation smoothing time constant
PB45	NHF4	Frequency of Machine resonance suppression filter 4
PB46		Attenuation rate of Machine resonance suppression
		filter 4

5.3.2.1 One-touch tuning procedure

One-touch tuning have simple operation procedure, it provides two types of execution method. In addition, it can be performed only when the servo system runs normally.

5.3.2.2 One-touch tuning display conversion and procedure

(a) Use communication software

(i) Three response modes can be selected in one-touch tuning window of the communication software.

On	eTouch 🗖 🗖 💌
R	eturn to value before ac Return to intial value
	Use the OneTouch function when servo motor operating.
I	Response mode
L.	○ High mode
L.	Response mode for high rigidity machines.
	Basic mode Start Response mode for standard machines.
	 Low mode Response mode for low-rigidity machines.
	Error code

You can refer to below table for response mode selection.

Response mode	Description
High response	For high stiffness systems
Middle response	For general stiffness systems.
Low response	For low stiffness systems.

(ii)One-touch tuning execution

Select response mode and press START to execute.

OneTouch				
Return to value before ac Return to intial value				
Use the OneTouch function when servo motor operating.				
Response mode				
○ High mode				
Response mode for high rigidity machines.				
Basic mode Response mode for standard machines.				
 Low mode Response mode for low rigidity machines. 				
Error status				
Error code Error List				
Adjustment result				
Setting time ms				
Overshoot amount pulse				

If an error occurs, the error code will display on the error status window.

The execution progress will be displayed on the status window, and 100% means fully completed.

🖳 Progress	<u> </u>		×
Progress in impleme	entation:	20%	
St	op)		_

(iii)Clear and reset

There are two methods to clear and reset the tuning related parameters.

I: clear: the gain parameters reset to factory default setting.

II: reset: the gain parameters reset to the setting value before one-touch tuning operation.

F					
OneTouch					
Return to value before ac Return to initial value					
Use the OneTouch function when servo motor operating.					
Response mode					
○ High mode					
Response mode for high rigidity machines.					
Basic mode Response mode for standard machines.					
○ Low mode					
Response mode for low rigidity machines.					
r Error status					
Error code Error List					
Adjustment result					
Setting time ms					
Overshoot amount pulse					

(b) Operate by servo panel

(i) There are 2 methods to enter one-touch tuning function by the panel.

(i-1)Press MODE button to enter one-touch tuning screen(show AUTO), and after holding SET button for 2 seconds, the LED blinks as below:

(i-2)In any screen, hold MODE and UP button at the same time for over 3 seconds to enter AUTO screen and LED blinks.

(ii)And then press UP or DOWN button to select one touch tuning response mode.

(iii) After selecting the response mode, press SET button to activate the one-touch tuning function and the execution progress shows on the screen.

(iv)You can press the SET button to stop the tuning, its panel screen and elimination

procedure are as follows:

(v)If an error occurs during the tuning process, the panel screen and troubleshooting methods are as follows:

(vi)There are 2 modes to clear and reset one-touch tuning related parameters.

I: reset to default value (clear mode).

II: reset to the value before tuning (back mode).

Press MODE key to enter One-touch tuning screen (show AUTO), and then you can press UP or DOWN button select clear mode or back mode, hold SET button for 2 seconds, the servo will execute the selected function and LED will blink for 3 seconds.

5.3.2.3 One-touch tuning error code list and solutions

Code	Error code	Description	Solution	
C000	Cancellation	Press STOP or SET		
	during tuning	button.		
C001	Position	Position overshot	Increase [PA12_INP] setting value.	
	overshot	exceeds [PA12_INP]		
	excess	position attained range.		
C002	SOV-OFF	Execute one-touch	Execute one touch tuning when SON is	
		tuning when SON is off.	on.	
		Try to turn SON OFF	Don't turn SON OFF during tuning.	
		during one-touch tuning.		
C003	Control mode	Execute one-touch	Switch to position or speed mode.	
	abnormal	tuning in torque mode.		
		Switch control modes	Do not switch mode during tuning.	
		during one-touch tuning.		
C004	Time out	Operation cycle period	Set the rotation cycle to more than 30	
		exceeds 30	seconds.	
		seconds(count from		
		current command starts		
		to next command start)		
		Motor speed is too low	The motor speed should be more than	
			100rpm.	
		Operation interval is too	Operation interval should be more than	
		short	500ms.	
C005	Load inertia	Load inertia estimation	The acceleration time from 0rpm to	
	estimation	failure during one-touch	2000rpm or the deceleration time from	
	abnormal	tuning	2000rpm to 0rpm should be 2 seconds	
			or less. If a 3000rpm case is applied, the	
			acceleration and deceleration time	
			should be 3 seconds or less.	
			The speed command should be 250rpm	
			or higher.	
			The load inertia ratio should be 100	
			times or less.	
			This tuning mode is not applicable to	
			those occasions with enormous load and	
			inertia ratio change.	
			Acceleration or deceleration torque	

			should be the 10% or more of rated
			torque.
		Load inertia estimation	Adjust to semi-auto gain tuning mode, in
		failure or inertia ratio	which the motor will stop load inertia
		change enormously due	estimation, and then execute one-touch
		to resonance.	tuning again.
			Select [PA02_ATUM]
			Set[PB06_GD1] to manually set load
			inertia ratio.
C00F	One-touch	In [PA38_AOP3] setting,	Set [PA38_AOP3]
	tuning function	the one-touch tuning	
	invalid	function is disabled.	

5.3.3 Auto tuning function

The auto-tuning function can estimate the load inertia ratio for servo drive in real time, and automatically set the best gain (GAIN value) according to the estimated value and the operation conditions. By using the auto-tuning function, the gain tuning of the servo drive can be performed easily and quickly.

5.3.3.1 Auto-tuning function

Auto-gain tuning mode 1

This mode is the factory default setting. If the servo is set to this function (PA02=0002), it will estimate the load inertia ratio continuously and set the servo gain value automatically. The only parameter that can be modified by the user is the response setting (PA03).

Parameter NO	Parameter abbreviation	Parameter name	Modifiable or auto-estimated
PA03	ATUL	Auto-tuning response level setting	Modifiable
PB06	GD1	Servo motor Load inertia ratio	Auto-estimate
PB07	PG1	Position loop gain	Auto-estimate
PB08	VG1	Speed loop gain	Auto-estimate
PB09	VIC	Speed integral gain	Auto-estimate

The related parameters and settings of this mode are as follows:

The following conditions is required if you set the servo to auto-gain tuning mode 1.

- 1. The acceleration time from 0rpm to 2000rpm or the deceleration time from 2000rpm to 0rpm should be 2 seconds or less. If a 3000rpm case is applied, the acceleration and deceleration time should be 3 seconds or less.
- 2. The speed command should be 250 rpm or higher
- 3. The load inertia ratio should be 100 times or less.

4. This tuning mode is not applicable to those occasions with enormous load and inertia ratio change.

5. Acceleration or deceleration torque should be the 10% or more of rated torque.

Auto gain tuning mode 2

When automatic gain tuning mode 1 cannot estimate the inertia correctly, you can use auto-gain tuning mode 2. By setting PA02 to 0003 in this mode, the load inertia ratio will not

be estimated automatically, you have to manually set PB06.

ParameterParameterNOabbreviation		Parameter name	Modifiable or	
			auto-estimateu	
PA03	ATUL	Auto-tuning response	Modifiable	
1 A03		level setting	Woullable	
DDOC	004	Servo motor Load inertia	Madifiable	
PBU6	GD1	ratio	Modillaple	
PB07	PG1	Position loop gain	Auto-estimate	
PB08	VG1	Speed loop gain	Auto-estimate	
PB09	VIC	Speed integral gain	Auto-estimate	

The related parameters setting are as follows:

5.3.3.2 Auto tuning procedure

When the user sets the servo to auto-tuning mode, the servo action is showing in the following block diagram.

To complete the auto-gain tuning, the following are key points:

- 1. If the servo is sets to auto-gain tuning mode 1, you need accelerate and decelerate the motor first, and the inertia ratio will be estimated base on the current and speed of the motor, this value will update to PB06 and write into EEPROM(every 30 minutes).
- 2. If the user knows the load inertia ratio, or when the inertia ratio cannot be accurately estimated (when the inertia ratio changes drastically), you can set PA02 to auto gain tuning mode 2, and write the known inertia ratio into PB06 manually. During the time, the gain value will keep searching.

With the inertia ratio and response level setting, the servo drive will adjust to the best gain during acceleration and deceleration. The searched gain results will be written into the EEPROM every 30 minutes after power on. The current gain value saved in the EEPROM will be used as the initial value of the auto-gain tuning when power on.

Shihlin servo has set the auto gain tuning mode 1 as the factory default setting. Once the motor is accelerated and decelerated, the best controller gain will be automatically set. The user only needs to set the required response level to complete the entire process. The sequence is shown in below.

5.3.3.3 The response of auto tuning mode

PA03(response level setting) is for servo overall response level setting, and the response level will impact the entire system bandwidth. Increasing response setting will improve the command traceability and shorten the settling time. But if the response setting is too high, the system will vibrate. It's recommended to set the response level within the non-vibrate range.

If the machine has resonated in the expected bandwidth, and yet the user wants to keep runs the servo in this bandwidth, The machine resonance suppression filter (PB01, PB02, PB21, PB22) and resonance suppression low-pass filter (PB03) can be used to suppress resonance, and sometimes response level can set to a higher level in this condition.

You can refer to section 6.3.6 for more information about machine resonance suppression filter and resonance suppression low-pass filter.

Response	Machine	Speed response	Response	Machine	Speed response
level	rigidity	frequency (Hz)	level	rigidity	frequency (Hz)
1	Low	10.0	17		67.1
2	response	11.3	18		75.6
3		12.7	19	Middle	85.2
4	}	14.3	20	response	95.9
5		16.1	21		108.0
6		18.1	22		121.7
7		20.4	23		137.1
8		23.0	24		154.4
9		25.9	25		173.9
10		29.2	26		195.9
11		32.9	27		220.6
12		37.0	28		248.5
13] ↓	41.7	29		279.9
14]	47.0	30		315.3
15	Middle	52.9	31		355.1
16	response	59.6	32	High response	400.0

For the response level setting, it is recommended to adjust response level from low to high gradually. If the default value is too high, it would very likely to cause resonance.

The applicable load inertia ratio is a reference data, and its applicable range varies with different systems.

5.3.4 Tuning in manual mode

If auto tuning function cannot meet the user's requirement, tuning in manual mode can be used to adjust gain parameters.

Manually tuning mode

In position and speed mode, the machine stiffness and the application will affect the selection of response bandwidth. Generally, for machines that require high precision, high response bandwidth is needed. However, increasing the response might cause mechanical resonance. Thus, machinery with higher stiffness is used to solve this problem.

When the allowable response bandwidth is unknown, you should set a smaller gain value first, and gradually increase the gain parameter values until the machine resonance occurs, and then decrease the gain value. The following are the user-defined gain parameter values of each control modes.

Name	Parameter	Parameter	Setting	Unit	Default	Control
	abbreviation	code	range		value	mode
Resonance						
suppression	NLP	PB03	0~10000	0.1ms	10	ALL
low-pass filter						
Position		DB05	0.200	0/	0	
feed-forward gain	FFC	PD05	0~200	70	0	PI, PI
Servo motor load	0.04	DDOC	0.4000	0.1	70	A I I
inertia ratio	GD1	PB06	0~1200	times	70	ALL
Position loop gain	PG1	PB07	4~1024	rad/s	45	Pt, Pr
Speed loop gain	VG1	PB08	40~9000	rad/s	183	ALL
Speed integral		DDOO	1 1000		24	A I I
gain	VIC	PB09	1~1000	ms	34	ALL
Speed			0.200	0/		с т
feed-forward gain	VFG	PDIU	0~200	70	0	Э, І

Position loop gain (PG1)

This parameter determines the response of the position loop. The bigger the PG1 value, the higher the response bandwidth of the position loop. It can decrease the following error and position error, and shorten the settling time. However, if you set the value too high, it may cause the machinery to vibrate or cause overshoot. The calculation of position loop gain is as follows:

 $\begin{array}{l} PG1 \ setting \ value \\ \leq \frac{VG1 \ setting \ value}{1 + ratio \ of \ load \ inertial \ to \ motor \ shaft} \times \frac{1}{4} \\ PG1 \ setting \ value \\ \approx \ speed \ loop \ bandwidth \ \times \frac{1}{4} \end{array}$

Speed loop gain(VG1)

This parameter determines the response of the speed control loop. The bigger the VG1 value, the higher the response bandwidth of the speed loop and the lower the following error. However, if you set the value too high, it may cause mechanical resonance. The response bandwidth of the speed loop must be 4 to 6 times higher than that of the position loop; otherwise, it may cause the machinery to vibrate or cause overshoot. The calculation of speed loop gain is as follows:

Speed loop response frequency(Hz) = $\frac{VG1 \text{ setting value}}{(1 + \text{ ratio of load inertial to motor shaft}) \times 2\pi}$

Speed integral gain (VIC)

This parameter is to clear the fixed deviation of the corresponding command. The smaller the VIC, the better the elimination of the deviation. However, in the occasions of large load inertia and with machine vibrates, if you set the value too low, it may cause the machinery to resonate.

VIC setting value(ms) $\geq \frac{3000 \sim 5000}{VG1 \text{ setting value / } (1 + GD1 \text{ setting value } \times 0.1)}$

Low-pass filter for resonance suppression (NLP)

A high inertia ratio reduces the system response bandwidth. Therefore, you must increase the gain value to maintain the response bandwidth. However, Increasing the gain value might cause mechanical resonance. You can use this parameter to eliminate the noise from resonance. The higher the value, the better the capability for reducing high frequency noise. Increasing the setting will improve the high-frequency noise, but too large setting will cause instability of the entire system and increase the phase lag. The recommended setting value is to follow below calculation:

NLP setting value(Hz) = $\frac{\text{VG1 setting value *10}}{2\pi * (1 + \text{GD1 setting value *0.1})}$

Position feed-forward gain (FFC)

This parameter can reduce the position error and shorten the settling time. However, if you set the value too high, it might cause overshoot in positioning when sudden acceleration or deceleration occurs. A large E-Gear ratio setting might cause noise as well.

Speed feed-forward gain (VFG)

This parameter can shorten the speed command following time. However, if you set the value too large, it might cause overshoot when sudden acceleration or deceleration occurs.

5.3.5 Interpolation mode

This mode is used to control two or more axis servo system, the controller gain parameter are still in the automatic tuning function, the main content is as follows:

Interpolation mode 1: only the position gain value (PB07) can be set manually. The remaining gain value (PB06, PB08, PB09) are automatically adjusted with PA03 settings.

Interpolation mode 2: the position gain (PB07) and load inertia ratio (PB06) can be adjusted manually, and the other gain value (PB08, PB09) are automatically adjusted with the setting of PA03.

5.4. Position mode parameter setting and operation

(1) Apply power to the servo drive

After applying power to the servo drive, please switch off the DI SON signal, the servo drive display shows "Servo Motor Rotation Speed " 2 seconds later automatically.

(2) Test operation

Use JOG operation to check if the servo is running normally.

(3) Parameter setting

After wiring for position control mode, you need to set below parameters to perform basic positioning control function.

Parameter	Name	Setting value	Content
PA01(Note1)	Control mode option	0	Position mode
PA02(Note2)	Auto tuning	0002	Auto gain mode 1
PA03	Auto-tuning response level setting	0012	Middle response
PA06	Electronic gear numerator	1	Set the numerator as 1
PA07	Electronic gear denominator	1	Set the denominator as 1
DA13	Command pulse option	Refer to s	section 8. 3 parameter
Command pulse option		description	
PD15(Noto 1)	Digital input filter time	?	Filter time constant is
	PD15(Note 1) Digital input filter time		4ms

Note 1: cycle the power to activate the parameter setting.

Note 2: the parameter cannot be set when SON-SG is short-circuited.

(4) Servo ON.

Below is the procedure to execute SERVO ON.

- (a) Apply control power to servo motor.
- (b) Turn on the servo on signal(SON) (SON-SG is short-circuited).

Servo is ready to run when SON is ON, and servo motor switches to SERVO LOCK immediately.

(c) When motor is stopped, AL.13 occurs if both LSP and LSN are OFF.

(5) Command pulse input

First run servo motor at low speed and input command pulse train after the rotation direction and speed is confirmed. PP and NP are pulse signal of forward/reverse rotation in open collector type. When differential type signals are applied, you should change the input signal circuit to PP-PG or NP-NG. Please set the auto-tuning function or manually input controller parameters and be careful about the mechanical resonance, you can adjust PA03 to achieve the best speed response.

(6) Homing

When performing homing, please confirm whether the direction and origin is correct, and execute the homing if necessary.

(7) Stop

You can follow below steps to stop the motor.

(a) When Servo ON signal (SON) is off

The PWM signal is disconnected and the servo will switch to a non-blocking free run state.

(b) When alarm occurs

When alarm occurs, the PWM signal is disconnected and the dynamic brake is activated to stop the servo motor immediately.

(c) When emergency stop(EMG) is OFF

The PWM signal is disconnected, and the dynamic brake is activated to stop the servo motor immediately. and the abnormal message are shown.

(d) When the LSP and LSN is off.

If LSP is ON, motor can rotate forwardly. If LSN is on, the motor can rotate reversely. If they are off, servo motor will stop immediately and servo is locked.

5.5. Speed mode parameter setting and operation

(1) Apply power to servo drive

After applying power to the servo drive, please switch off the DI SON signal, and then the servo drive display automatically shows "Servo Motor Rotation Speed" 2 seconds later.

(2) Test operation

Use JOG test to confirm if the servo is running normally.

(3) Parameter setting

After wiring for speed control mode, you need to set below parameters to perform basic speed control.

Parameter	Name	Setting value	Content
PA01(Note 1)	Control mode option	0002	Speed control mode
PC05	Internal speed command 1	1000	Set to 1000 rpm
PC06	Internal speed command 2	1500	Set to 1500 rpm
PC07	Internal speed command 3	2000	Set to 2000 rpm
PC01	Acceleration time constant	1000	Set to 1000ms
PC02	Deceleration time constant	500	Set to 500ms
PC03	S-curve acceleration/deceleration	0	N/A
	time constant		
PD15(Note1)	Digital input filter time	0002	External terminal filter
			time constant is 4ms

Note 1: turn the power off and then turn on to activate the parameter setting.

(4) Servo ON

Below is the procedure to execute SERVO ON.

- (a) Apply control power to servo motor.
- (b) Turn on the SON signal (SON-SG is short-circuited).

Servo is ready to run when SON is ON, and servo motor switches to SERVO LOCK immediately.

(c)When motor is stopped, AL.13 occurs if either LSP or LSN is OFF.

(5) Start

Select the speed by SP1 or SP2 signal, and the options are as follows:

External input signal(Note)		Speed command			
SP2	SP1				
0	0	Analog speed command(VC)			
0	1	Inner speed command 1(PC05)			
1	0	Inner speed command 2(PC06)			
1	1	Inner speed command 3(PC07)			

After selecting target speed, turning on operation command(ST1 or ST2)will rotate the motor. The instruction to run the motor forwardly and reversely are as follows:

(Note)External in	put rotation direction	Rotation direction
ST2	ST1	Internal speed command
0	0	Stop(servo locked)
0	1	CCW
1	0	CW
1	1	Stop(servo locked)

NOTE: 0: OFF(STx-SG is open-circuited) 1: ON(STx-SG is short-circuited)

First run the motor at low speed to check the rotation direction, check the input signal if needed. In status display panel, you can check the motor rotation speed, command pulse number, load rate and so on.

You can use auto-tuning function or manually set the controller parameter, and need to pay attention to avoid mechanical resonance, you can adjust PA03 to achieve the best response of speed control.

(6) Stop

You can follow below steps to stop the motor.

(a) When Servo ON signal (SON) is off

The PWM signal is disconnected and the servo will switch to a non-blocking free run state.

(b) When alarm occurs

When alarm occurs, the PWM signal is disconnected and the dynamic brake is activated to stop the servo motor immediately.

(c) When emergency stop(EMG) is OFF

The PWM signal is disconnected, and the dynamic brake is activated to stop the servo motor immediately. and the abnormal message are shown.

(d) When the LSP and LSN is off.

If LSP is ON, motor can rotate forwardly. If LSN is on, the motor can rotate reversely. If they are off, servo motor will stop immediately and servo is locked.

(e) When both ST1 and ST2 signal is on or off, the servo will decelerate to stop.

5.6. Torque mode parameter setting and operation

(1) Apply power to the servo drive

After applying power to the servo drive, please switch off the DI SON signal, the servo drive display shows "U(Torque command voltage)" 2 seconds later automatically.

(2) Test operation

Use JOG operation to confirm if the servo is running normally.

(3) Parameter setting

After wiring for torque control mode, you need to set below parameters to perform basic torque control and speed limit.

Parameter	Name	Setting value	Content
PA01(Note1)	Control mode option	4	Torque control mode
PC05	Internal speed limit 1	1000	Set to 1000 rpm
PC06	Internal speed limit 2	1500	Set to 1500 rpm
PC07	Internal speed limit 3	2000	Set to 2000 rpm
PC01	Acceleration time constant	1000	Set to 1000ms
PC02	Deceleration time constant	500	Set to 500ms
PC03	S-curve acceleration/deceleration time constant	0	N/A
P15	Digital input filter time	2	External terminal filter
1 13	Digital input inter time		time constant is 4ms
PA05	Internal torque limit 1	50	Maximum torque 50% as
		50	a limit

(4) SERVO ON

Below is the procedure to perform SERVO ON.

(a)Apply control power to servo motor.

(b)Turn on the servo on signal(SON) (SON-SG is short-circuited).

Servo is ready to run when SON is ON, and servo motor will not be locked(SERVO LOCK).

(c) LSP and LSN function is invalid.

(5) Start

Use SP1 and SP2 to select speed limit value. When RS1 is ON, motor runs forwardly, when RS2 is on, the servo runs reversely, the torque is generated. You should run the motor at low speed in the beginning to check the rotation direction. Check the input signal if the direction is incorrect.

(6) STOP

You can follow below steps to stop the motor.

(a) When Servo ON signal (SON) is off

The PWM signal is disconnected and the servo will switch to a non-blocking free run state.

(b) When alarm occurs

When alarm occurs, the PWM signal is disconnected and the dynamic brake is activated to stop the servo motor immediately.

(c) When emergency stop(EMG) is OFF

The PWM signal is disconnected, and the dynamic brake is activated to stop the servo motor immediately, and the abnormal message are shown.

(d) When both RS1 and RS2 signal is on or off, the servo will be in free run status.

6. Control Function

6.1. Selecting the control mode

This servo drive provides four basic operation modes, Position(terminal input) mode, Position(internal register) mode, Speed mode, and Torque mode. You can choose either single mode or multi-mode. The following table lists all the modes and corresponding descriptions:

	Mode	Code	PA01 setting	Description
	Position control (terminal input)	Pt	0000	Drive receives the external position pulse command which is input from terminal, and then runs the motor to reach the target position.
mode	Position control (inner register)	Pr	0010	The drive receives the position command which is provided by the internal register (63 groups of registers), and runs the motor to the target position. The DI signal can be used to select the register number.
Single	Speed control	S	0002	The drive receives the speed command and runs the motor to the target speed. The speed command can be selected by the DI signal(7 groups of register) to select analog voltage command or internal speed command.
	Torque control	Т	0004	The drive receives torque command which is provided by analog voltage command and internal torque command, and runs the motor to the target torque.
Multi-mode	Position mode (terminal input) -Position mode (internal register)	Pt-Pr	0030	Pt/Pr is switched mutually via the signal of DI(LOP).

	-		-
Position mode (terminal input) -Position mode (internal register) -Speed mode	Pt-Pr-S	0031	Pt/Pr/S is switched mutually via the signal of DI(LOP).
Position mode (terminal input) -Position mode (internal register) -Torque mode.	Pt-Pr-T	0035	Pt/Pr/T is switched mutually via the signal of DI(LOP).
Position mode (terminal input) -Speed mode.	Pt-S	0001	Pt/S is switched mutually via the signal of DI(LOP).
Position mode (terminal input) -Torque mode	Pt-T	0005	Pt/T is switched mutually via the signal of DI(LOP).
Position mode (internal register) -Speed mode	Pr-S	0011	Pr/S is switched mutually via the signal of DI(LOP).
Position mode (internal register) -Torque mode	Pr-T	0015	Pr/T is switched mutually via the signal of DI(LOP).
Speed mode -Torque mode	S-T	0003	S/T is switched mutually via the signal of DI(LOP).

✦ After PA01 setting is changed, the setting is valid after power cycling.

6.2. Torque control mode

Torque control mode is usually used in the following torque control applications, such as winding machines, printing machines, injection molding machine, etc. Shihlin servo torque control has two kinds of command sources: analog input and internal register. The following figure shows the basic torque control structure:

First select torque control mode in mode option parameter, and then by signals of TC1 and TC2, you can choose command source between external analog voltage and internal register parameter.

6.2.1. Analog torque command

6.2.1.1 Torque command selection

Input torque command has 2 methods, one is the external input $\pm 10V$ analog torque voltage command, another is to set 3 types of torque commands by internal parameters. It makes total 4 types of torque command.

Torque command	(Note) sig) Input nal	Torque command	Range	Related
code	TC2	TC1			parameter
ТСМ	0	0	Analog torque command(TC)	±10V	PC 13
TC1	0	1	Inner torque command 1	-300~300	PC 75
TC2	1	0	Inner torque command 2	-300~300	PC 76
TC3	1	1	Inner torque command 3	-300~300	PC 77

Note 0: OFF(TCx-SG is open-circuited) 1: ON(TCx-SG is short-circuited)

6.2.1.2 Scaling of the analog torque command

Scaling of the analog torque command is the maximum torque output of analog command, its content is as follows:

Name	Parameter code	Setting range	Unit	Default value	Control mode
Maximum torque output of analog command	PC13	0~2000	%	100	Pt, Pr, S, T

To set the analog torque command when the input voltage is in maximum(10V).

If you set PC13 to 100 and the external input voltage is 10V, the torque command is 100% of the maximum torque. If the input voltage is 5V, the torque command is 50% of the maximum torque, Its conversion relationship is as follows:

Torque command = input voltage value / 10 * parameter setting value

6.2.2. Offset adjustment of the analog torque command

When the analog torque command input is 0V, the motor may still rotate slowly, which is mainly because the external analog voltage may have some slightly voltage offset, it makes the input command voltage does not match the actual voltage. At this time, the offset voltage can be corrected by the PC27. The parameter content is shown in the below table:

Name	Parameter code	Setting range	Unit	Default value	Control mode
Analog torque command/limited offset value	PC27	-8000~8000	mV	0	S, T

6.2.3. Torque command smoothing

This parameter is to set the filter time constant of torque command. With a proper filter time constant value, you can run the servo motor smoothly even if a sudden change occurs. The parameter description is as follows.

Name	Parameter code	Setting range	Unit	Default value	Control mode
Torque command filter time constant	PB19	0~5000	ms	0	Т

6.2.4. Torque limit of torque control mode

When the torque control mode is performed, there are mainly 2 parameters to control the torque limit function. The description is as follows:

Name	Parameter abbreviation	Parameter code	Setting range	Unit	Default value	Control mode
Inner torque limit value 1	TL1	PA05	0~100	%	100	All
Inner torque limit value 2	TL2	PC25	0~100	%	100	All

For the TL1 signals of CN1. See the following table for more detail:

Name	Parameter abbreviation	Description	Control mode
Inner		When this signal is used, you need set PD02~	
torque	TI 4	PD09 or PD21~PD24 first. When TL1-SG is	Λ.ΙΙ
limit	161	short-circuited, the inner torque limit 2 (PC25) will	All
option		be activated.	

Only when PD02~PD09 or PD21~PD24 is set to use internal torque limit option(TL1) signal, the internal torque limit 2 (PC25) can be selected, and there will be two options base on the status of DI TL1.

Digital input signal(Note)	Valid torque limit value
TL1	vand torque initi value
0	PA05 setting
1	PC25 setting > PA05 setting => PA05 setting PC25 setting < PA05 setting => PC25 setting

Note 0: OFF(TL1-SG is open-circuited) 1: ON (TL1-SG is short-circuited)

6.2.5. The speed limit of torque mode

In torque control mode, the speed limit is selected by internal SP1,SP2,SP3 and external analog command. By counting all the internal and external analog limit, there are totally 8 types of speed limit options. The following table lists the speed limit options.

Diantiana	Speed limit	(Note) Input	signal	Succed limit	Limit	Related
Dioptions	code	SF	22	SP1	Speed limit	range	parameter
	VCM	C)	0	Analog speed limit(VC)	±10V	PC12
when SP3 is	SC1	0)	1	Internal speed limit 1	-6000 ~ 6000	PC05
value)	SC2	1		0	Internal speed limit 2	-6000 ~ 6000	PC06
	SC3	1		1	Internal speed limit3	-6000 ~ 6000	PC07
	Speed limit code	SP3	SP2	SP1	Speed limit	Range	Related parameter
	VCM	0	0	0	Analog speed limit(VC)	±10V	PC12
	SC1	0	0	1	Internal speed limit 1	-6000 ~ 6000	PC05
	SC2	0	1	0	Internal speed limit 2	-6000 ~ 6000	PC06
SP3 is valid	SC3	0	1	1	Internal speed limit3	-6000 ~ 6000	PC07
	SC4	1	0	0	Internal speed limit 4	-6000 ~ 6000	PC08
	SC5	1	0	1	Internal speed limit 5	-6000 ~ 6000	PC09
	SC6	1	1	0	Internal speed limit 6	-6000 ~ 6000	PC10
	SC7	1	1	1	Internal speed limit 7	-6000 ~ 6000	PC11

Note 0: OFF(SPx-SG is open-circuited) 1: ON (SPx-SG is short-circuited)

- When the external input analog speed command is selected, please set the voltage to 0V, and set the value of PC12 which should not exceed the rated speed of the motor, otherwise it may cause damage to the motor and the mechanism.
- Before using SC4~SC7 function, make sure to enable the DI SP3 by PD02 ~PD09 setting or PD21~PD24.

The internal speed limit parameters description are as follows:

Name	Parameter code	Setting range	Unit	Default value	Control mode
Internal speed	DOOL	0~Instant		400	
limit1	PC05	permissible speed	rpm	100	I
Internal speed	DCOG	0~Instant	rom	500	т
limit2	PC06	permissible speed	тртт	500	I
Internal speed		0~Instant	rom	1000	т
limit3	FCUI	permissible speed	трп	1000	I
Internal speed		0~Instant	rom	200	т
limit4	FCUo	permissible speed	трп	200	I
Internal speed	DC00	0~Instant	rom	200	т
limit5	FC09	permissible speed	трп	300	I
Internal speed		0~Instant	rom	500	т
limit6	FCIU	permissible speed	трпт	500	I
Internal speed		0~Instant	rom	800	т
limit7	PUT	permissible speed	трш	000	I

6.3. Speed control mode

Speed control mode is suitable for precise speed control applications, such as and CNC machines, drilling machine, etc. There are two types of command sources: (1) analog input, (2) internal register.

The analog command controls the motor speed by external voltage input.

The register input controls the speed in two methods.

The first method is to manually set the 7 different required speeds in the 7 command registers (PC05~PC11) before starting the operation, and then switch DI of SP1, SP2, SP3 of CN1.

The second method is to changes the value in the register through communication software with RS485 or USB.

To deal with the problem of non-continuous speed when switching registers, you can use the S-curve function, thus the motor can keep running smoothly when switching to different speed. In a closed-loop system, the servo drive uses gain adjustment and the accumulative integrated PI controller. And it also provides two operation modes (manual and automatic).

In manual mode, you can set all the parameters, so all the auto or auxiliary functions are disabled. In auto gain adjustment modes, the servo drive performs load inertia estimation and provides parameter adjustment function. In this case, the parameter setting values are regarded as the initial values. This simple mode provides a robust system function for the user, which is different from the adaptability rule that requires a longer learning time in the automatic operation mode. Simple operation mode can suppress external load interference and mechanism resonance in real time, and tolerate load inertia change.

The upper part of the graph is the internal speed command, which controls the speed command by manually input parameter and switches by terminal DI. The lower part of the graph is the external analog input $\pm 10V$ voltage. After processing by A/D, it calculates the set analog command max output(scaling) and voltage offset value and then outputs to the next part.

It is recommended that the user use S-curve smoother and low-pass filter when operating in the speed mode, which can effectively suppress the irregularity of the motor during operation.

6.3.1. Selecting the Speed command

There are two methods to input speed command, the first one is to set 7 speed commands by internal parameters. Another is the external input $\pm 10V$ analog voltage command, It makes totally 8 types of speed command options.

	Speed (Note) Input		nput	Speed	Limit	Related	
DI options	command code	SP2	sign 2	al SP1	command	range	parameter
	VCM	0		0	Analog speed command(VC)	±10V	PC12
Speed options when SP3 is	SC1	0		1	Internal speed command 1	-6000 ~ 6000	PC05
invalid(Initial status)	SC2	1		0	Internal speed command 2	-6000 ~ 6000	PC06
	SC3	1		1	Internal speed command 3	-6000 ~ 6000	PC07
	Speed command code	SP3	SP2	2 SP1	Speed limit	Range	Related parameter
	VCM	0	0	0	Analog speed command(VC)	±10V	PC12
	SC1	0	0	1	Internal speed command 1	-6000 ~ 6000	PC05
	SC2	0	1	0	Internal speed command 2	-6000 ~ 6000	PC06
SP3 is valid	SC3	0	1	1	Internal speed command 3	-6000 ~ 6000	PC07
	SC4	1	0	0	Internal speed command 4	-6000 ~ 6000	PC08
	SC5	1	0	1	Internal speed command 5	-6000 ~ 6000	PC09
	SC6	1	1	0	Internal speed command 6	-6000 ~ 6000	PC10
	SC7	1	1	1	Internal speed command 7	-6000 ~ 6000	PC11

(Note) 0: OFF(SCx-SG is open-circuited) 1: ON (SCx-SG is short-circuited)

- When the external input analog speed command is selected, please set the voltage to 0V, and set the value of PC12 which should not exceed the rated speed of the motor, otherwise it may cause damage to the motor and the mechanism.
- Before using SC4~SC7 function, you should enable DI SP3 contact by PD02~PD09 or PD21~PD24 setting.

6.3.2. Scaling of the analog speed command

Scaling of the analog speed command is the maximum speed of analog command, its content is as follows:

Name	Parameter code	Setting range	Unit	Default value	Control mode
Maximum speed of analog command	PC12	0 ~30000	rpm	3000	S, T

To set the speed of the analog speed command when the input voltage is in maximum(10V). If you set PC12 to 3000 and the input voltage is 10V, the servo motor speed is 3000 rpm. If the input voltage is 5V, the servo motor speed is 1500 rpm, Its calculation is as follows:

Speed command = Parameter setting value* input voltage value / 10

6.3.3. Smooth Speed command

If the motor input command changes abruptly, it might cause motor vibrate and noise, or may even cause overshoot. Shihlin servo provides three smooth operation parameters to suppress the negative influence caused by sudden change of the input command. First of all, the speed acceleration time constant can adjust the slope of the change in acceleration, the speed deceleration time constant can adjust the slope of the change in deceleration, and the S-curve acceleration and deceleration time constant can improve the motor stability when starts and stops.

Name	Parameter abbreviation	Parameter code	Setting range	Unit	Default value	Control mode
Acceleration time constant	STA	PC01	0~20000	ms	200	S, T
Deceleration time constant	STB	PC02	0~20000	ms	200	S, T
S-curve acc. /dec. time constant	STC	PC03	0~10000	ms	0	Pr, S, T

The description of the 3 parameters are as follows:

Speed acceleration time constant:

This parameter is the acceleration time when the motor speed changes from 0 rpm to the rated motor speed, which is set as the acceleration time constant. For example, the rated speed of the servo motor is 3000 rpm, and this parameter is set to 3000 (3s). so the time for the motor to accelerate from 0 rpm to 3000 rpm is 3 seconds. When the speed command is set to 1000 rpm, it takes 1 second for the motor to change from 0 rpm to 1000 rpm.

Speed deceleration time constant:

When the motor speed is decelerated from the rated speed to 0 rpm, the required deceleration time is the deceleration time constant. For example, the servo motor runs at 3000 rpm, this parameter is set to 3000(3s), then the time for the motor to decelerate from 3000 rpm to 0rpm is 3 seconds. When the motor is running at 1000 rpm, it takes 1 second to decelerate from 1000 rpm to 0 rpm.

S-curve acc. / dec. time constant :

The S-curve acceleration and deceleration constant is use three-stage acceleration and deceleration curve to smooth the motor when it starts and stops. Proper setting of STC helps to stabilize the motor operation when starting and stopping. The initial S-curve acceleration and deceleration constant is 0 second. It's recommended to enable this function before using speed mode.

- The above parameters will have acceleration and deceleration protection functions in either internal speed state or the analog input state.
- Parameters STA, STB, STC can be set independently. Even if STC is 0, a trapezoidal acceleration and deceleration is still available.

Speed command low-pass smooth filter time constant :

Name	Parameter abbreviation	Parameter code	Setting range	Unit	Default value	Control mode
Speed command						
low-pass smooth	SFLT	PB18	0~1000	ms	0	S, T
filter time constant						

Increasing this parameter value will improve smoothness of command curve, and it will decrease the response. If it is set to 0, it means that this function is disabled.

6.3.4. Torque limit of speed control mode

Name	Parameter abbreviation	Parameter code	Setting range	Unit	Default value	Control mode
Internal torque limit value 1	TL1	PA05	0~100	%	100	Pt, Pr, S, T
Internal torque limit value 2	TL2	PC25	0~100	%	100	Pt, Pr, S, T

When using the speed mode, the main parameters related to the torque limit are PA05 and PC25. The table below shows these two parameters:

There are 3 input terminals in CN1, including one analog voltage signal input terminal and two digital input, which are explained in the following table:

Name	Parameter abbreviation	Description	Control mode
Analog torque limit	TLA	To use this signal in speed control mode, you should enable TL by PD02~PD09 or PD21~PD24 setting. When TLA is valid, the torque of the servo motor is limited in the entire system. Please apply a voltage of DC0~10V to TLA-LG circuit. TLA is connected to the positive polarity of power and the maximum torque will be generated at +10V.	Pt,Pr,S
Torque control option	TL	When this signal is used, you should activate PD02~PD09 or PD21~PD24 first. The internal torque limit 1 (PA05) is valid when TL-SG is open, and the analog torque limit (TLA) is valid when TL-SG is short-circuite.	Pt,Pr,S
Internal torque limit option	TL1	When this signal is used, you should activate PD02~PD09 or PD21~PD24 first. The internal torque limit 2 (PC25) is valid when TL1-SG is short.	Pt,Pr,S,T

Only when set the PD02~PD09 parameter to enable TL1, internal torque limit 2(PC25) is valid. There are 4 combinations which are decided by the DI of TL and TL1.

The usage of torque limit value (TL), inner torque limit option (TL1) and analog torque limit (TLA) are shown in the table below:

(Note) DI signal		Volid torquo limit voluo		
TL1	TL	vanu torque innit value		
0	0	PA05 setting		
0	1	TLA > PA05 setting => PA05 setting TLA < PA05 setting => TLA		
1	0	PC25 setting > PA05 setting => PA05 setting PC25 setting < PA05 setting => PC25 setting		
1	1	TLA > PC25 setting => PC25 setting TLA < PC25 setting => TLA		

Note 0: OFF(TLx-SG is open-circuited) 1: ON (TLx-SG is short-circuited)

When the generated torque of the servo motor reaches the torque limit value setting by the PA05, PC 25 or the analog torque limit, TLC -SG will be conductive and TLC is digital output.

Name	Parameter abbreviation	Parameter abbreviation		
Torque limiting control	TLC	When the generated torque reaches the torque value setting by the Inner torque limit 1(PA05) or the analog torque limit(TLA), TLC -SG will be conductive. TLC-SG will not be conductive when SON is off.	Pt,Pr,S	

6.3.5. Gain adjustment of the speed loop

In the Speed control loop, you can adjust many different gain parameters. You can adjust the gain automatically or manually which is set by PA02. If set as auto adjustment, the load inertia ratio will be estimated continuously and the control gain value will be set automatically. If set as manual adjustment, you should manually set proper load inertia ratio and control gain value, and all auto or auxiliary functions will be disabled. The structure diagram of the speed loop is shown in the following figure:

In the speed control loop, the gain adjustment related parameters are summarized as follows:

Name	Parameter abbreviation	Parameter code	Setting range	Unit	Default value	Control mode
Auto-tuning mode setting	ATUM	PA02	0000h~0004h	N/A	0002h	Pt, Pr, S, T
Auto-tuning response level setting	ATUL	PA03	1~32	N/A	10	Pt, Pr, S, T
Speed loop gain	VG1	PB08	40~9000	rad/s	183	Pt, Pr, S
Speed integral gain	VIC	PB09	1~1000	ms	34	Pt, Pr, S
Speed feed-forward gain	VFG	PB10	0~200	%	0	S

Auto mode:

The servo drive will adjust the optimal controller gain during acceleration and deceleration. And its detail description can refer to section 5.3.2. Manual mode:

When you set PA02 to 0000 or 0001, its mainly effective gain value are speed loop gain (PB08), speed integral gain (PB09), and speed feed-forward gain (PB10). When PA02 is set to 0001, the interference compensator function will be automatically enabled, which can reduce torque ripple, overshoot and speed change rate. It is applicable in systems with frequently load changes, but it cannot be used in a system with an over 10 times load inertia ratio. The gain value also need to be adjusted according to the situation during operation. The diagram is as below:

Parameters used in manual mode:

Speed loop gain

Increasing the speed loop gain value will improve the bandwidth. but if the setting is too large, it will cause the system vibration. It is recommended to estimate a base value in the automatic mode, and then manually increase the value slowly until the system vibrates if necessary. Set back the value before system vibrates.

Speed integral gain

Decreasing the value of this parameter will increase the low-frequency stiffness of the speed loop and reduce the steady-state error. But setting too low may worsen the phase lag, and may cause system instability.

Speed feed-forward gain

The speed feed-forward gain can reduce the phase lag error and increase the ability of traceability. When the setting value is close to 100, the dynamic tracking error will be very small, and the pre-compensation will be the most completed. If the setting is too low, the improvement effect of the system is small. If the setting value is too large, the system will easily vibrate.

6.3.6. Resonance suppression unit

(1) Automatic high-frequency resonance suppression

Due to the limitation of the mechanism, Resonance may occur when the response bandwidth of control system is too large, and this may cause damage on the mechanism. Usually this phenomenon can be improved by increasing the rigidity of the mechanism or reducing the bandwidth of the system, but it will increase the cost and reduce the response. To suppress resonance without increasing the cost and reducing the bandwidth, this servo drive provides Automatic High-frequency Resonance Suppression. its related parameters, setting ranges and default values are shown in the below table. It mainly provides five groups of resonance suppression filters and one group of low-pass filters to suppress resonance, the user can manually or automatically operate as below instructions.

Name	Parameter abbreviation	Parameter code	Setting range	Unit	Default value	Control mode
Auto resonance suppression mode	ANCF	PB27	0~2	N/A	1	All
Auto-resonance suppression detection level	ANCL	PB28	1~300	%	50	All
Machine resonance suppression frequency 1	NHF1	PB01	10~4000	Hz	1000	All
Machine resonance suppression attenuation 1	NHD1	PB02	0~32	dB	0	All
Machine resonance suppression frequency 2	NHF2	PB21	10~4000	Hz	1000	All
Machine resonance suppression attenuation 2	NHD2	PB22	0~32	dB	0	All
Machine resonance suppression frequency 3	NHF3	PB25	10~4000	Hz	1000	All
Machine resonance suppression attenuation 3	NHD3	PB26	0~32	dB	0	All

Machine resonance						
suppression	NHF4	PB45	10~4000	Hz	1000	All
frequency 4						
Machine resonance						
suppression	NHD4	PB46	0~32	dB	0	All
attenuation 4						
Machine resonance						
suppression	NHF5	PB47	10~4000	Hz	1000	All
frequency 5						
Machine resonance						
suppression	NHD5	PB48	0~32	dB	0	All
attenuation 5						
Resonance						
suppression	NLP	PB03	0~10000	0.1ms	10	All
low-pass filter						

Manual mode

The drive provides five groups of filters and one group low-pass filters to manually suppress resonance, the first group is PB01, PB02; the second group is PB21, PB22; the third group is PB25, PB26; the fourth group is PB45, PB46; the fifth group is PB47, PB48; the low-pass filter is PB03, and PB01, PB21, PB25, PB45, PB47 are suppression frequencies, PB02, PB22, PB26, PB46, PB48 are resonance attenuation rates, and PB03 is time constant.

If the resonance frequency is known, the user can manually set the frequency of the filter and increase the attenuation rate gradually until there is no resonance phenomenon (Note 2), or slowly increase the low-pass filter time constant (reduce the low-pass filter bandwidth) until no resonance occurs, but this method will reduce the response bandwidth of the system.

Auto mode:

There are three groups of filters to perform automatic resonance suppression, the first is PB01 and PB02; the second is PB21 and PB22, and the fourth is PB45 and PB46. Among them, PB01, PB21 and PB45 are suppression frequencies, and PB02, PB22 and PB46 are resonance attenuation rates.

When resonance occurs, the user can set PB27 to 1 or 2 to activate the auto-suppression function if the resonance frequency is unknown, the drive will automatically detect the resonance frequency and attenuation rate and set the detected value to the first group, the second group and the fourth group of filters (Note 1) in sequence. If PB27 is set to 1, it will be change back to 0 automatically after automatic detection is completed; if PB27 is set to 2,

it will perform resonance detection and suppression continuously. For other PB27 operation procedure, please refer to the table below.

When PB27 is set to 1 or 2, if the resonance still exists, please check whether one of the parameters of PB02, PB22 and PB46 is 32. If yes, the resonance phenomenon cannot be suppressed by the filter, and it is recommended to reduce the system bandwidth and perform re-estimation. If it is less than 32 and greater than 0, it means that the automatic detection mode has detected the resonance frequency, but the resonance still exists due to insufficient attenuation rate (Note 1), you can manually increase the attenuation rate to improve (Note 2). If PB02, PB22 and PB46 are 0, it means that the resonance frequency is not detected, which may due to the detection level (PB28) is too high, it is recommended to lower the level and then set PB27 to 1 or 2 before performing detection again. The complete automatic resonance suppression flow chart is as follows:

Note 1: the attenuation rate detected by the drive is the most suitable one, it may not be the best one, but it can ensure the stable operation of the system.

PB27 parameter flow chart						
PB27 current	PB27 modified	Function				
value	value					
0	1	Clear PB01~02, 21~22, 46~47 values,				
0	Ι	enable auto-suppression function.				
0	2	Clear PB01~02, 21~22, 46~47 values,				
0	2	enable continuously auto-suppression function.				
1	0	Store PB01~02, 21~22, 46~47 value,				
1		disable auto-suppression function.				
	4	Clear PB01~02, 21~22, 46~47 values,				
1	I	enable auto-suppression function.				
1	2	Not clear PB01~02, 21~22, 46~47 values,				
1		enable continuously auto-suppression function.				
2	0	Store PB01~02, 21~22, 46~47 value,				
2	0	disable auto-suppression function.				
2	1	Clear PB01~02, 21~22, 46~47 values,				
<u>ک</u>	I	enable auto-suppression function.				
2	2	Not clear PB01~02, 21~22, 46~47 values,				
Z	2	enable continuously auto-suppression function.				

Note 2: be careful when manually adjust the attenuation rate, if the setting is too large, it may cause the system unstable.

(2) Automatic low-frequency vibration suppression

When the command changes instantaneously, the motor and the load will not be synchronized due to insufficient rigidity of the drive system, it will cause mechanical vibrate during motor positioning, and cause problems such as inaccurate motor positioning and bad product yield rate. Usually this problem can be improved by reducing the bandwidth of the system, but the response will be worse in this case. To suppress vibration without reducing the bandwidth, this servo drive provides an Automatic Low-frequency Vibration Suppression option, its related parameters, setting ranges, and default values are shown in the following table. It mainly provides two groups of low-frequency vibration filters for user to operate manually or automatically.

Name	Parameter abbreviation	Parameter code	Setting range	Unit	Default value	Control mode
Auto vibration suppression mode	AVSM	PB29	0~1	N/A	0	Pt, Pr
Low-frequency vibration detection level	VCL	PB30	1~8000	pulse	50	Pt, Pr
Low-frequency vibration suppression frequency 1	VSF1	PB31	1~3000	0.1Hz	100	Pt, Pr
Low-frequency vibration suppression gain 1	VSG1	PB32	0~15	N/A	0	Pt, Pr
Low-frequency vibration suppression frequency 2	VSF2	PB33	1~3000	0.1Hz	100	Pt, Pr
Low-frequency vibration suppression gain 2	VSG2	PB34	0~15	N/A	0	Pt, Pr

Manual mode:

This servo drive provides two groups of suppression filters for users to manually operate, the first group is PB31, PB32; the second group is PB33, PB34. In which, PB31 and PB33 are suppression frequencies, and PB32 and PB34 are suppression gains. If the vibration frequency is known, the user can manually set the vibration frequency to PB31, PB33, and set PB32, PB34 to 1. In these two parameters, set to 1 means to enable the suppression function, and set to 0 is to disable the suppression function. If you want to improve the position response, you can increase the gain value. The larger the value, the better the response. (Note 1).

Auto mode:

The drive provides two groups of filters for users to perform automatic low-frequency vibration suppression, the first group is PB31 and PB32; the second group is PB33 and PB34. Among them, PB21 and PB25 are suppression frequencies, and PB22 and PB26 are
resonance attenuation rates. When low-frequency resonance occurs, the user can set PB29 to 1 to enable the auto-suppression function if the resonance frequency is unknown, the drive will automatically detect the resonance frequency, and then set the detected results to the PB31 and PB33 in sequence, and set PB32, PB34 to 1 to enable the auto-suppression function. After auto-detection is completed, PB29 will set back to 0 automatically. For other PB29 operate procedure, please refer to the table below.

When PB29 is set to 1, if the resonance still exists, please check whether PB32 and PB34 are both 0. If yes, it means the vibrate frequency is not detected, which may impacted by high swing detection level(Note2). You can decrease the level and restart the detection to solve. If the values are not 0, which means the detection is wrong, which may cause by low swing detection level. You can increase the level before restart the detection. The complete auto-suppression flow chart is as follows:

Note 1. Too large gain value may make the motor to run un-smoothly.

Note 2. The swing detection level refers to the peak-to-peak value of the vibration, and the unit is pulse.

PB29 parameter flow chart						
PB29 current	PB29 modified	Eurotion				
value	value	Function				
		Clear PB31~34 values,				
0	I	enable the auto-suppression mode				
1	0	Store PB31~34 value,				
1	0	disable the auto-suppression function.				
1	1	Clear PB31~34 values,				
I	I	enable the auto -suppression mode				

Flow chart of auto-resonance suppression.

6.3.7. Gain switch function

Shihlin servo drive provides gain switching function. It can switch the gain on the operating or stopped servo motor. The switching can be performed by DI pins which are set to switch. If the users want to apply gain switching options, manual mode is required (PA02 is set to $\Box\Box\Box$ or $\Box\Box\Box$). If the auto-gain switching mode is applied, the gain switching function will be disabled.

It is applicable in below occasions:

(1).Servo gain setting is too large and makes big noise, you can use the gain switching function to reduce the system gain.

- (2).When the load inertia ratio changes greatly during operation, to ensure the stability of the servo system, you can use the gain switching function to change the inertia ratio or gain value.
- (3).To make the servo system have a higher response or a shorter settling time, you can use the gain switching function to increase the gain.

The related parameters and the detail descriptions for gain switching function are listed below:

Parameter Paramet		Parameter	Setting	Unit	Default	Control
item	abbreviation	code	range	Onit	value	mode
Servo motor load	GD1	PB06	0~1200	0.1 times	70	Pt, Pr, S
inertia ratio						
Position loop gain	PG1	PB07	4~1024	rad/s	45	Pt, Pr
Speed loop gain	VG1	PB08	40~9000	rad/s	183	Pt, Pr, S
Speed integral gain	VIC	PB09	1~1000	ms	34	Pt, Pr, S
Gain switching option	CDP	PB11	0000h~ 0008h	N/A	0000H	Pt, Pr, S
Gain switching condition value	CDS	PB12	0~4000000	Set according to parameter	10	Pt, Pr, S
Gain switching time constant	CDT	PB13	0~1000	000 ms		Pt, Pr, S
Servo motor load inertia ratio 2	GD2	PB14	0~1200	0.1 times	70	Pt, Pr, S
Position loop gain change	PG2	PB15	10~500	%	100	Pt, Pr

ratio						
Speed loop						
gain	VG2	DR16	10 500	0/	100	Dt Dr S
change	V G2	FDIO	10~500	70	100	гι, гι, З
ratio						
Speed						
integral						
gain	VIC2	PB17	10~500	%	100	Pt, Pr, S
change						
ratio						

The following will explain the related parameters for gain switching.

- (1). The four parameters, which are servo motor load inertia ratio GD1, position loop gain value PG1, speed loop gain value VG1, and speed integral gain value VIC, (PB06~PB09). They are adjusted in the same way as the manual mode parameters, but its value may be changed during gain switching.
- (2). Gain switch option CDP(PB11)

This parameter is to set the condition of gain switching by changing the lowest digit of the parameter. It triggers the gain switching by external digital input(DI) signal. Its external digital input (DI) signal can be set as gain switching function by parameters PD02~PD09 or PD21~PD24

0	0	0	х

x=0: disable the gain switching.

x=1: activate the gain switching when CDP is ON.

x=2: activate the gain switching when position command frequency is equal to or

higher than CDS setting.

x=3: activate the gain switching when position deviation pulse is equal to or higher

than CDS setting.

x=4: activate the gain switching when motor speed is equal to or higher than CDS setting.

x=5: activate the gain switching when CDP is OFF.

x=6: activate the gain switching when position command frequency is less than or equal to CDS setting.

x=7: activate the gain switching when position deviation pulse is less than or equal

to SDS setting.

x=8: activate the gain switching when servo motor speed is less than or equal to CDS setting.

(3). The value of gain switching condition CDS(PB12)

The setting value of gain switching condition (kpps, pulse, rpm) changes according to the setting of CDP (PB11). When set to $\Box \Box \Box \Box$, the parameter is frequency (kpps), when set to $\Box \Box \Box \Box 3$, it is pulse number (pulse), when it is set to $\Box \Box \Box 4$, it is rotation speed (rpm). The unit of the setting value changes according to switching item.

PB11 setting	Switch condition	Unit	
	When position command frequency is equal to or	kono	
	higher than CDS setting.	кррѕ	
	When position deviation pulse is equal to or higher	nulaa	
	than CDS setting	puise	
	When motor speed is equal to or higher than CDS	rom	
	setting		
	When position command frequency is less than or	kong	
	equal to CDS setting.	kpps	
	When position deviation pulse is less than or equal	nulco	
	to CDS setting	puise	
	When motor speed is less than or equal to CDS	rom	
	setting	трш	

(4). Time constant of gain switching CDT(PB13)

The gain switching time constant is to smooth the gain switching. It is used to set the time constant when switching the CDP and CDS conditions. If the gain setting is too large during gain switching, you can use this parameter to suppress the vibration.

(5). Servo motor Load inertia ratio 2 GD2 (PB14)

This parameter can be set to the load inertia ratio value to be switched. If the load inertia ratio does not change during operation, please set PB14 to the same value as GD1 (PB06).

(6). The change rate of position gain 2 PG2, speed gain 2 VG2, and speed integral

Gain VIC2 during gain switching (PB15~PB17).

When performing the gain switching, the original servo gain value will be changed to the ratio value (%)of PG2, VG2, and VIC.

Below are examples to illustrate the gain switching operation.

Example 1: digital input signal use as switching source.

①. Relevant parameters setting:

Nama	Parameter	Parameter	Default	Unit
Name	abbreviation	code	value	Unit
Servo motor load inertia	CD1	DROG	10	0 1timo
ratio	601	FDUO	10	0. rume
Position loop gain	PG1	PB07	100	rad/s
Speed loop gain	VG1	PB08	500	rad/s
Speed integral gain	VIC	PB09	100	ms
Gain switching option	CDP	PB11	0001	N/A
Gain switching time	CDT	DP12	10	ma
constant		PDIS	10	1115
Servo motor load inertia	GD2		20	0 1times
ratio 2	ODZ		20	0.101163
Position loop gain change	PG2	PB15	80	%
ratio	102	1 013	00	70
Speed loop gain change	VG2	PB16	120	%
ratio	VOZ	T DTO	120	70
Speed integral gain		PB17	150	%
change ratio	VICZ		150	/0

②. The gain switching diagram

③. The states of parameters change

Name	CDP OFF		CDP ON		CDP OFF
Servo motor load inertia ratio	10	\rightarrow	20	\rightarrow	10
Position loop gain	100	\rightarrow	80	\rightarrow	100
Speed loop gain	500	\rightarrow	600	\rightarrow	500
Speed integral gain	100	\rightarrow	150	\rightarrow	100

Example 2: take deviation pulse as switching source

①. Relevant parameter setting

Name	Parameter abbreviation	Parameter code	Default value	Unit
Servo motor load inertia ratio	GD1	PB06	10	0.1 times
Position loop gain	PG1	PB07	100	rad/s
Speed loop gain	VG1	PB08	500	rad/s
Speed integral gain	VIC	PB09	100	ms
Gain switching option	CDP	PB11	0003	N/A
Gain switching condition value	CDS	PB12	100	pulse
Gain switching time constant	CDT	PB13	10	ms
Servo motor load inertia ratio 2	GD2	PB14	20	0.1times
Position loop gain change ratio	PG2	PB15	80	%
Speed loop gain change ratio	VG2	PB16	120	%
Speed integral gain change ratio	VIC2	PB17	150	%

2 . The gain switching diagram.

③. The states of parameters change

Name	CDP OFF		CDP ON		CDP OFF
Servo motor load inertia ratio	10	\rightarrow	20	\rightarrow	10
Position loop gain	100	\rightarrow	80	\rightarrow	100
Speed loop gain	500	\rightarrow	600	\rightarrow	500
Speed integral gain	100	\rightarrow	150	\rightarrow	100

6.4 Position control mode

The position control mode is used in where precise positioning is required, such as industrial machinery, processing machines, and so on. There are two types of position control mode: one is terminal input mode, and the other is internal register input mode. The terminal input mode is to receive the pulse command from the controller, and apply this command to control the positioning of the servo motor, and the internal register input mode is to manually input 63 groups of position command values (please refer to Chapter 7), and then define DI functions which are POS1~POS6 to switch the corresponding position command. Below table will introduce the setting of terminal input and internal register input.

Name	Parameter	Parameter	Setting	Unit	Default	Control	Description
Control mode setting value	STY	PA01 (*)	0000h ~ 1116h	N/A	0000h	ALL	Control mode setting value: u z y x x: control mode setting x=0: position mode y: position control input command option y=0: terminal input y=1: internal register input

PA01 setting value is valid after power cycling.

 When the external input pulse signal function is activated, the S-curve smoother is disabled.

6.4.1 External pulse command(Pt command)

The pulse command (Pt command) is provided by an external device. You should set PA01 to 0000 and then restart power to activate this parameter. There are three types of user-defined input waveform. each type can be defined positive and negative logic. Positive logic means the pulse is triggered by the rising edge, on the other hand, negative logic means the pulse is triggered by the falling edge. The related parameters and setting methods are as follows:

Name	Abbr.	Code	Range	Unit	Defa	Mod	Description	
Function mode option 3 (comma nd pulse option)	PLSS	PA13	0000h ~ 0312h	N/A	0000 h	Pt	Set external input pulse train type $\begin{array}{c c c c c c c c c c c c c c c c c c c $	

This parameter setting is valid after power cycling.

	Pulse logic and format	Forward rotation	Reverse rotation		
		PP			
	AB phase pulse train				
'e logic	Dulas tasia u sina				
Jegativ	Puise train + sign	NP L	Н		
	Forward/reverse rotation				
	pulse train	NP			
		PP			
	AB phase pulse train	NP			
e logic		PP			
Positiv	Puise train+ sign	NP H	L		
	Forward/reverse rotation				
	pulse train	NP			

If input pulse is line drive type, the maximum frequency is 4Mpps. If input pulse is open collector type, the maximum frequency is 200Kpps.

6.4.2 Internal position command (Pr command)

♦ You can refer to detail in chapter 7.

The source of the PR position command is to use 64 groups built-in position command register of parameters(PE01~PE98), (PF01~PF30), together with external I/O(CN1, POS1 ~ POS6 and CTRG)to select one as position command, the detail shows in the following table.

Position	POS6	POSS	POSA	POS3	POS2	POS1	CTRG	Related
command	1000	1000	1004	1000	1002	1031	CING	parameter
PO	0	0	0	0	0	0	*	PE01
FU	0	0	0	0	0 0		l	PE02
D1	0	0	0	0	0	1	*	PE03
	0	0	0	0	0	I	I	PE04
~								~
D50	1	1	0	0	1	0	*	PF03
F 50	I	1	0	0	I	0	I	PF04
D51	1	1	0	0	1	1	*	PF05
FOI	I	I	0	0	I	I	I	PF06
~								~
Dea	1		4	1	1	1		PF29
F03								PF30

Status of POS1 - POS6: 0 means that DI is off (the circuit is open); 1 means that DI is on (the circuit is closed). CTRG : indicates the moment the DI is switched from off(0) to on(1).

Absolute and incremental position registers are widely used, which is equivalent to a simple program. You can easily complete a periodic motor operation according to the preceding table.

6.4.3 Position command smoothing

This parameter is to set the filter time constant of the position command. With an appropriate parameter setting, the motor can run smoothly even when it encounters abruptly position command changes.

Name	Parameter Setting code range		Unit	Default value	Control mode
Position command filter time constant	PB04	0~20000	ms	3	Pt, Pr

In addition, speed smoothing for acceleration/deceleration also can help the servo motor to run more smoothly. The speed smoothing for position acceleration/deceleration related parameter is as follows:

Name	Parameter abbreviation	Parameter code	Setting range	Unit	Default value	Control mode
S-curve acceleration /deceleration time constant.	STC	PC03	0~10000	ms	0	Pr, S, T

Note: you can refer to chapter 7 for the acceleration /deceleration time in PR mode.

Speed smoothing for acceleration/deceleration can effectively improve the feature of motor acceleration and deceleration. When the motor load inertia increases, or when the inertia changes significantly, the motor is not able to run smoothly due to the inertia and friction. Increasing the setting of the STC (PC03) can effectively improve this.

When position command is determined by external pulse, the parameters STA (PC01), STB (PC02), and STC (PC03) will be invalid, due to the external input pulse command has been determined by the controller, which is to provide the continuity of speed and angular acceleration.

As can be seen in the above figure, for the forward rotation or reverse rotation command from position command, its acceleration and deceleration time is determined by PF49~PF64.

If the internal register is used as position command, to run the motor more smoothly, it is recommended to use the self-defined acceleration/ deceleration time(PF49~PF64) and the S-curve acceleration/deceleration time constants(PC03).

Note: please refer to Chapter 7 for above ACC and DEC settings.

6.4.4 Electronic gear ratio

Name	Parameter abbreviation	Parameter code	Setting range	Unit	Default value	Control mode
Electronic gear numerator	СМХ	PA06	1~2 ²⁶	N/A	1	Pt, Pr
Electronic gear denominator	CDV	PA07	1~2 ²⁶	N/A	1	Pt, Pr
Electronic gear numerator 2	CMX2	PC32	1~2 ²⁶	N/A	1	Pt
Electronic gear numerator 3	СМХЗ	PC33	1~2 ²⁶	N/A	1	Pt
Electronic gear numerator 4	CMX4	PC34	1~2 ²⁶	N/A	1	Pt

Users could set different electronic gear ratios to enable the gearing to move different distances. The relevant parameters are as below:

Incorrect E-Gear ratio setting will cause servo motor suddenly unintended acceleration, so please ensure to set the parameter when servo is off. The E-Gear ratio setting value should be within the range of 1/50 <(CMX/CDV) <320000, otherwise the motor may cannot operate. The relationship between the E-Gear ratio numerator & denominator and the command is showing in the figure below.

There are four groups of E-Gear ratio numerators for users to switch, please set 2 DI input register as CM1 and CM2 before switching. Please refer to the following table for detail.

Name	CM1	CM2	Control mode
E-Gear numerator 1 (PA06)	0	0	Pt
E-Gear numerator 2 (PC32)	1	0	Pt
E-Gear numerator 3 (PC33)	0	1	Pt
E-Gear numerator 4 (PC34)	1	1	Pt

• 0: CMx-SG is open-circuited,1: CMx-SG is short-circuited.

Calculation of E-Gear ratio :

Before calculating the E-Gear ratio, the user must know the specifications of the system, such as the resolution of the motor encoder is 22bit Pulse/rev, the deceleration ratio of the mechanism, the E-Gear ratio and so on.

The E-Gear ratio calculation is as follows:

```
E-gear ratio = \frac{\text{Resolution of motor encoder}}{(\text{Load distance per revolution (angle) / Distance pulses to be shifted entered by user}}
```

If there is a deceleration ratio between the motor and the loads, you must multiply the deceleration ratio to it, which is revolution number of motor shaft / revolution number of load shaft.

The following is an example to illustrate how to set the E-Gear ratio.

From the figure above, it shows that the load (ball screw rod) has a moving distance of 1mm per revolution, and the motor resolution is 24-bit Pulse/rev. if you want the load axis to rotate 5µm distance, the calculation is as below.

Electronic gear ratio = 16777216 / 200

From which, it can be known that when the numerator of the E-Gear ratio is set to 16777216, the denominator is set to 200. and the ball screw rod will be shifted a 5-µm distance after a position pulse command.

6.4.5 Torque limit of position loop

Same as section 6.3.4.

6.4.6 Position loop gain.

As the position loop is outside control of speed loop, if the user uses the manual mode to adjust the position loop, it's necessary to set the speed gain related parameters first (refer to section 6.3.5), and then set the position proportional gain and the position feed-forward gain. The position loop gain can be set to a value of $1/4 \sim 1/6$ of speed loop gain. The user can also use the auto-tuning mode to set the position and speed gains automatically. The position loop diagram is shown as below:

The relevant parameters of position gain adjustment are listed as below:

Name	Parameter abbreviation	Parameter code	Setting range	Unit	Default value	Control mode
Auto tuning mode option	ATUM	PA02	0000h~0004h	N/A	0002h	Pt,Pr,S,T
Auto-tuning response level setting	ATUL	PA03	1~32	N/A	10	Pt,Pr,S,T
Position feed-forward gain	FFC	PB05	0~200	%	0	Pt,Pr
Position loop gain	PG1	PB07	4~1024	rad/s	45	Pt,Pr

When the position loop gain PG1 (PB07) is set too large, although the bandwidth and response gets faster, the motor will run back and forth with vibration. This is not allowed in the application which requires precise position control, you must decrease the PG1 value until no vibration occurs.

If the bandwidth is limited by the machine, which makes the position feedback cannot track the position command and cannot meet the reasonable position error requirements, you can use the position feed-forward gain to reduce the dynamic error of the position tracking. In other words, using position feed-forward gain will increase the position settling time relatively.

The position feed-forward gain adjustment method is set from low to high. Theoretically, setting it to 1 should be the best. If the setting is too large, it may cause vibration. In this case, the position feed-forward value should be reduced until no vibration occurs.

6.5 Dual control mode

Speed - torque

Mode PA01 Mode name Description code setting Position with external Pt/S is switched mutually via Pt-S 1001h command - speed the signal of DI. Position with external Pt/T is switched mutually via Pt-T 1005h command - torque the signal of DI. Dual Pr/S is switched mutually via Position with inner register Pr-S 1011h mode command - speed the signal of DI. Position with inner register Pr/T is switched mutually via Pr-T 1015h command - torque the signal of DI. S/T is switched mutually via

To easily switch control modes frequently, Shihlin servo also provides five dual-modes for user to set manually. PA01 can change the dual mode setting, see the table below:

When using the dual mode, the assignment of DI and DO is very important. To avoid insufficient DI/DO pin, in S-T mode, you can input speed and torque by external analog input, and in position mode you can use external input pulse, which is to save DI.

S-T

1003h

the signal of DI.

The DI pin of switching mode is LOP pin, please enable LOP function of DI. The description is as follows:

Name	Abbr.	I/O type	CN1 NO.	Description	Control mode
Control mode switching	LOP	DI	CN1-21 (Preset)	Optionsofposition/speedcontrol switch mode(Note)ControlLOPmode0position1speed0position1speed/torque controlswitch mode.(note)ControlLOPmode0speed1torque0speed1torque0speed1torque0controlLOPmode.0speed1torque1positioncontrol switch mode.(note)ControlLOPmode0torque1positionNote00: OFF(Open-circuit)1: ON (Short-circuit)	Described according to different control mode

The DI assigned ST1 and RS2 as the same pin. When S-T dual mode is applied, the ST1 function would have priority in speed control mode and the RS2 function would have priority in torque control mode.

6.5.1 Position/speed dual mode

There are two types Position/speed dual mode: Pt/S and Pr/S. The user can switch between them by the LOP terminal. When PA01 is set to the terminal input or the internal register input in the position mode, its switching timing diagram with the speed mode is shown as below:

The mode cannot be switched if the motor is running at high speed. When DO ZSP is on, the control mode can be switched, and it is recommended that the user wait for the motor stops completely before mode switching.

6.5.2 Speed / Torque dual mode

Before using the speed/torque dual mode, please set PA01 to 1003H. The user can switch the speed/torque mode by the LOP terminal. Since the DI terminal ST1 (ST2) of speed mode is automatically changed to RS2 (RS1) when switching to the torque mode, the rotation direction of the motor will be reversed when switching between speed/torque modes. The timing diagram of the speed/torque mode is as follows:

It is recommended to switch speed/torque mode after the motor is completely stopped.

6.5.3 Torque/position dual mode

It has 2 types: T/Pt and T/Pr. The user can set PA01 to 1005 (T/Pt mode) or 1015 (T/Pr mode).

If the motor is running at high speed, the mode switching cannot be performed. When DO ZSP is on, the control mode can be switched.

The user can switch the torque/position dual mode through the LOP terminal of the DI pin. If you want to switch to position control with inner register mode, the CTRG signal need to be turned on, you can refer to the following timing diagram for details:

It is recommended that the user performs torque/position mode switching after motor is stopped completely.

6.6 Other functions

•Before connecting to peripheral devices, turn off the power and wait for 20 minutes or more until the charge LED turns off, and check the residual voltage by meter. Otherwise, an electric shock may occur.

•Please use designated products for peripheral devices to avoid fire or CAUTION malfunction.

6.6.1 Selection of regenerative resistor

•It's forbidden to use regenerative resistor and servo drive except for CAUTION below specified combinations, otherwise, a fire disaster may occur.

If the torque direction of the motor is opposite to the rotation direction, the motor will switch to a power generator, The energy will be transferred from the load to the inside of drive, which will cause voltage excess of P-N terminal. To avoid module and capacitor damage, the regenerative protection function should control the voltage within 370V/740V. The regenerative protection function is mainly composed of IGBT and resistor. The regenerative energy is consumed by the resistor, and its resistance need to be checked when using it. The regenerative protection function is controlled by the regenerative transistor and you should check if the regenerative resistor is normal before operation. If the regenerative transistor is damaged, stop the motor urgently to avoid continuous energy regeneration which will damage the drive.

The drive has a built-in regenerative resistor for users .If the regenerative energy is too large, it is not recommended to use the built-in regenerative resistor, use an external regenerative resistor instead to avoid overheating or damage the drive due to failing to consume energy.

User can use the external terminals of P,D,C to connect either external regenerative resistor or built-in regenerative resistor. When built-in regenerative resistor is used, make sure P-D terminals is short-circuited. When external regenerative resistor is used, make P-D open and regenerative resistor is connected to P-C terminals.

The following tables shows the specification of built-in regenerative resistor for Shihlin servo drive.

Drive(W)	Specification regenerativ	n of built-in ve resistor	The Minimum permissible	Consumption power
	Resistance(Ω)	Capacitor(W)	resistance (Ω)	(W)
100	100	20	100	10
200	100	20	100	10
400	100	20	100	10
750	40	40	40	20
1000	40	40	40	20
1500	13	100	13	50
2000	13	100	13	50
3000	13	100	13	50

The specification of regenerative resistor for 200V models:

The specification of regenerative resistor for 400V models:

Drive(W)	Specification of bu resis	ilt-in regenerative stor	The Minimum permissible resistance
	Resistance(Ω)	Capacitor(W)	(Ω)
2000	-	-	30
3000	-	-	30
5000	-	-	20
7000	-	-	15

Please set the regenerative resistor resistance value (PA10) and capacity (PA11) correctly, otherwise it may affect this function

The regenerative processing capacity of built-in regenerative resistors is the average value of the regenerative capacity, and its value is 50% of its rated capacity; Same rule as the external regenerative resistor

When the regenerative capacity exceeds the regenerative capacity of the built-in regenerative resistor, an external regenerative resistor should be used. When connecting external regenerative resistor, please select regenerative resistors with the same resistance. If you increase the capacity of the resistor in series or parallel connection, make sure that its resistance meets the requirement. To reduce the temperature, you can use regenerative resistor with thermal switch or use forced cooling system. Regarding the load feature of the resistor, you can consult the manufacturer for detail.

When selecting external regenerative resistor, please select the resistance value which is suggested in the above table. To easily estimate the required capacity of the regenerative

resistor, below is the instruction of selecting the external regenerative resistor capacity:

(a) Without external load

If the motor is running forwardly and reversely, the regenerated energy from brake will first enter the capacitor of the DC bus. When the voltage of the capacitor exceeds a certain value, the regenerative resistor will consume the excess recharge energy. The selection method of regenerative resistor is as follows; The following table provides the calculation of regenerative energy. Users can refer to below table and calculate the required regenerative resistance.

			Motor		Capacitor	Maximum
Drivo(M	n	Motor	inertia J	Es(joule)	regenerative	motor
Dive	*)	WOO	(x10 ⁻⁴ kg ⋅ m²	(Note 1)	energy	speed.
)		Ec(joule)	(rpm)
	100	SME-L00530 • □ □ □	0.030	0.15	8.1	3000
	100	SME-L01030 • □ □ □	0.052	0.28	8.1	3000
	200	SME-L02030	0.161	0.79	8.1	3000
	400	SME-L04030 • □ □ □	0.27	1.37	9.9	3000
low inertia	750	SME-L07530 • □ □ □	1.07	5.28	16.8	3000
	1K	SME-L100200000	6.1	13.38	16.8	2000
	1.5K	SME-L150200000	8.8	19.30	40.8	2000
	2K	SME-L20020 • □ □ □	11.5	25.22	40.8	2000
	3K	SME-L30020 • □ □ □	16.7	36.63	40.8	2000
	1K	SME-M100200000	10.3	22.59	16.8	2000
Middle	1.5K	SME-M150200000	15.0	32.90	40.8	2000
inertia	2K	SME-M200200000	32.1	70.4	40.8	2000
	3K	SME-M300200000	61.2	134.23	40.8	2000
	200	SME-H02030 • □ □ □	0.35	1.73	8.1	3000
	400	SME-H04030 • □ □ □	0.62	3.06	9.9	3000
Ligh inortio	750	SME-H07530 • □ □ □	1.66	8.19	16.8	3000
nigh inertia	1K	SME-H08515onn	13.1	16.05	16.8	1500
	3K	SME-H130150000	19.82	24.45	40.8	1500
	3K	SME-H18015onn	26.42	32.59	40.8	1500
	2K	SMP-H180150000	26.1	26.1	134.4	1500
Lliah	3K	SMP-H290150000	46	46	163.2	1500
	5K	SMP-H440150000	67.5	67.5	196.8	1500
1110111a(400V	5K	SMP-H550150000	89	89	196.8	1500
	7K	SMP-H750150000	125	125	240	1500

Note 1: Es is the regenerated energy of a motor without loading that runs a rated speed then stops.

The capacity of regenerative resistor is calculated as follows by using the Es and Ec in the above table:

$$P_{BR} = 2 \times ((N+1) \times E_{S} - E_{C})/T$$

In which N: the Load inertia ratio T: operation cycle(Defined by user)

Assuming that the load inertia is N times the motor inertia, when the motor decelerates from 3000rpm to 0, the regenerative energy is $(N+1)\times Es$ and the regenerative resistor needs to consume $(N+1) \times Es$ -Ec Joules. Assuming that the operation cycle is T sec, then the required regenerative resistor power =2×($(N+1) \times Es$ -Ec)/T. the calculation is as follows;

Note: J: motor inertia(unit: $kg \cdot m^2$), Wr: maximum speed of operation cycle(unit: rpm)

Step	ltem	Calculation and instruction
1	Set the operation cycle T	Manual input(operation cycle)
2	Set rotation speed Wr	Manual input or read from panel status display(r)
3	Set load / motor inertia ratio N	Manual input or read from panel status display(Dc)
		(PA01=0002 is valid)
4	Calculate the maximum	$Es = J * Wr^2 / 182$ (if it's rated speed, you can check
	regenerative energy Es	the value in the table directly)
5	Set the consumable	Refer to the above table
	regenerative energy Ec	
6	Calculate the capacity of	2 * ((N + 1) * Es - Ec) / T
	regenerative resistor	

Example 1

Taking the low inertia 400W model as an example, the operation cycle T = 1 sec, the maximum speed is 3000rpm, and the load inertia is 20 times of the motor inertia, then the required power of the regenerative resistor = $2 \times ((20 + 1) \times 1.37 - 9.9) / 1 = 37.7W$. Therefore, an external regenerative resistor above 37.7w is required.

Note: since the maximum speed of 3000rpm is rated speed of 400W motor, it can be found from the above table that Es = 1.37 J.

Example 2

Taking the middle inertia 2KW model as an example, the operation cycle T = 1 sec, the maximum speed is 1000rpm, and the load inertia is 20 times of the motor inertia, then Es =

32.1 x 0.0001 x $1000^2/182 = 17.6$ J, and the required regenerative resistor power= 2 x ((20 + 1) x17.6-40.8) / 1 = 657W, which is far larger than capacity of built-in regenerative resistor. Therefore, it's recommended to use the designated 1KW regenerative resistor.

Generally, when the external load inertia is not large, the built-in regenerative resistor is sufficient. If you select a regenerative resistor with small resistance, its accumulated energy and temperature will increase. When the temperature exceeds a certain value, it may burn out the brake resistor.

You can refer to section 14.2 when using an external regenerative resistor.

(b) When there is external torque and makes the motor to do negative work

Usually, the motor does positive work and the motor's torque direction is identical to the rotation direction. However, in some case, if the external load exceeds motor torque, external energy will enter the servo drive and generate regenerative energy.

The following figure shows an example, when the motor is running at a stable speed, the external load torque is positive in most of the time and a large amount of energy is quickly transferred to the regenerative resistor.

Negative work by external load torque : TL×ω

In which TL: external load torque(Unit: Nt-m), ω: rotation speed(Unit: rad/s).

Users should try to calculate in the safest situation.

For example: when the external load torque is +50% of the rated torque and the motor speed reaches 3000 rpm, for a 400W model (rated torque: 1.27Nt-m), the users need to connect an

external regenerative resistor which is $2 \times (0.5 \times 1.27) \times (3000 \times 2 \times \pi/60) = 399W$, 100Ω . Note: 1rpm = $2\pi \swarrow 60$ (rad/s).

6.6.2 Analog monitor function

This servo provides 2 analog output channels: MON1 and MON2, which is in CN1-30(MON1) and CN1-32(MON2) separately, for the users to check the required voltage signal easily. The two groups of analog output monitor item are introduced in the following table:

Name	Abbr.	Code	Range	Description	Default	Control
Analog monitor output	MOD	PC14	0000h ~ 0909h	Set the analog monitor output signal, and there are 2 channels: ch1 and ch2. 0ch2 0ch1 The set values of Ch1 and Ch2 and its corresponding outputs are shown as below: 0: motor speed((±10V/2 times of rated speed) 1: motor torque (±10V/ max torque) 2: speed command (±10V/2 times of rated speed) 3: effective load rate (±10V/±300%) 4: pulse command frequency (±10V/4300k pules/s) 5: current command (±10V/max current command) 6: DC Bus voltage(±10V/450V) 7: error pulse number (±10V/1048576 pulse) 8: error pulse number (±10V/1000 pulse) 9: error pulse number	0100h	ALL

Use below sample to illustrate:

If the analog monitor output (PC14) is set to 0000, the rated speed of the motor is ±3000 rpm

(± means forward and reverse rotation), and the current speed of the motor is 3000 rpm in forward direction. The user can measure the analog voltage output of +5V from the CN1-30 terminal. The above example is the analog voltage value observed when the user does not adjust the parameters of PC28~PC31.

Analog Monitor Voltage offset

The analog monitor voltage offset parameter are used to set the compensation to eliminate the analog voltage offset. Assuming that the zero value of MON1 and MON2 does not match the actual zero value, the analog monitor voltage offset parameter can be adjusted, the description is as follows:

Name	Abbr.	Code	Range	Description	Unit	Default value	Control mode
Analog monitor MO1 voltage offset	MO1	PC28	-999 ~ 999	Used to set the offset voltage of the analog monitor MON1 output.	mV	0	ALL
Analogue monitor MO2 voltage offset	MO2	PC29	-999 ~ 999	Used to set the offset voltage of the analog monitor MON2 output.	mV	0	ALL

Use below example to illustrate:

Assuming that the motor speed is 0 rpm, the voltage value which is observed by the analog output monitor (MOD) should be 0V. From the above figure, the difference between the analog voltage output by MOD and the actual voltage is 0.5V. At this time, as long as PC28 or PC29 is set to -500, the analog voltage of MOD can be corrected to the same value as the

actual voltage. If the analog voltage of MOD is smaller than the actual voltage, please input a positive value in PC28 or PC29.

Analog monitor output ratio

The analog monitor output ratio is used to set the resolution of the analog monitor voltage output. The relevant parameters are as follows:

Name	Parameter abbreviation	Parameter code	Setting range	Description	Unit	Default value	Control mode
MON1				Set the			
analog				maximum			
monitor	MOG1	PC30	1~100	ratio of analog	%	100	ALL
output				monitor 1			
ratio				output			
MON2				Set the			
analog				maximum			
monitor	MOG2	PC31	1~100	ratio of analog	%	100	ALL
output				monitor 2			
ratio				output			

Assuming that the rated speed of the motor is ± 3000 rpm, and the current speed of the motor is ± 3000 rpm, the voltage observed by the MON should be $\pm 5V$. If MOG1 or MOG2 is set to 50%, the analog voltage observed by the MON will become $\pm 10V$.

MOD output voltage= current monitoring value/ maximum monitoring value * 10V / MOG.

The unit of MOG1 and MOG2 are %.

6.6.3 Operation of electromagnetic brake

The electromagnetic brake operation is based on: (1)When the MBR is OFF, it means that the electromagnetic brake is disabled and the motor is locked; (2)When the MBR is ON, it means that the electromagnetic brake is activated and the motor can run freely. The electromagnetic brake operation can be set by PC40 and PC16. The PC40 controls the delay output time when the electromagnetic brake interlock signal (MBR) is turning on after the initial delay time of SON ON, and PC16 sets delay time from the SON signal OFF to the electromagnetic brake interlock signal (MBR) is turning on after the initial delay time of SON ON, and PC16 sets delay time from the SON signal OFF to the electromagnetic brake interlock signal (MBR) turn off. Usually electromagnetic brakes are used in the Z-axis (vertical axis) direction to reduce the large amount of heat generated by the continuous resistance of the servo motor, which is to shorten the lifetime of the motor. To avoid unnecessary malfunction, the electromagnetic brake must be operated after the servo is turned off. The brake signal controls solenoid valve, which makes a loop of 24V external power and provides power supply to turn on the electromagnetic brake.

- When the brake signal controls solenoid valve, makes a loop with external 24V power supply, provides power for electromagnetic brake and turn the electromagnetic brake on.
- Brake coil has no polarity.
- It is forbidden to use the internal +24V power supply (VDD) of the drive as the motor brake power supply
- If the MBR DO signal is not applied, you should follow the MBR brake control timing diagram.
- ◆ To enable DO MBR function, PA01 need to be set to 01 □□.

Electromagnetic brake control timing diagram:

Wiring diagram of electromagnetic brake:

Specification of electromagnetic brake:

	SME Series							
		□02030/ □04030	L07530			H08515/		
Motor model name	L00530/ L01030			H07530		□10020/	M20020/ M30020	
						H13015/		
(○ B □□)					530	□15020/		
						H18015/		
						L20020/		
						L30020		
Electromagnetic brake type	Spring brake type							
Rated voltage (V)								
Power consumption (W)	6.3	7.9	8.6	8.	.0	23	34	
Rated current (A)	0.24	0.32	0.35	0.3	33	0.95	1.41	
Friction Torque (N • m)	0.3	1.3	2.4	2.	.5	16	45	
Motor model name	SMP series							
(∘B□□/		H29015/	H55015/					
∘D□□)	FI00515	H44015	H75015					
Electromagnetic brake type	Spring brake type							
Rated voltage (V)	DC24V							

Power consumption	(W)	19.5	18.3	25
Friction Torque (N • m)		≧19.6	≧44	≧74

★ For the description of ○□□□, please refer to Section 1.3.1

▲ Note:

The electromagnetic brake is only for the safety maintenance when motor is stopped, and cannot be used for motor deceleration braking.

7. PR (procedure) program control introductions

7.1 PR introduction

PR (Procedure) program: in the PR mode, the PR program is the smallest unit of the command. It contains one or more programs and there are 64 groups of programs can be programmed. They are a group of homing programs (PATH#0) and 63 groups of PR programs (PATH#01~PATH#63). There are three different methods to trigger the program.

Standard trigger: use POS1~POS6 to assign the triggering program, and triggered by CTRG[↑].

Event trigger: the program is triggered by the rising or falling edge of EV1~EV4, and you can refer to the parameters setting of PF83 and PF84.

Software trigger: the program can be triggered by writing the required trigger number into PF82 when servo is started.

	The PR mode of SDA	The PR mode of SDP		
Total number of commands	8 independent positions	1 set of homing (PATH#0) 63 sets of programs (PATH#01~PATH#63)		
Command type	positioning command	positioning/speed/JUMP/WRITE/ Indexing positioning		
Position command	Either absolute/ relative	Absolute/ incremental/relative(can use alternatively)		
Acceleration/deceleration time	1 group	16 groups		
Rotation speed	8 groups	16 groups		
Delay time	N/A	16 groups		

7.2 The difference between the PR mode of SDP and SDA.

Command trigger method	DI: POSn + TRG↑	DI: POSn + CTRG↑ Event trigger: EV1~EV4 Software trigger: PF82
Position command format	Including revolution number and pulse number.	Set 32-bit data directly (different control types have different units)
Homing function	Automatic trigger when power on (First servo start) Trigger by DI:SHOM	Automatically trigger by power on (first servo start) Trigger by DI:SHOM Program 0 (PATH#0) is homing. After the homing is completed, the specified program can be automatically executed
Software limit protection	N/A	Yes
7.3 DI/DO and sequences in PR mode

DI Signal:

CTRG, SHOM, STOP, POS1~POS6, ORGP, LSP, LSN, EV1~EV4.

DO Signal :

CMDOK, MC_OK, INP(Servo In-position ready), ALM, OVF(Position command overflow), SWPL(Software positive limit reached), SWNL(Software negative limit reached).

The timing diagram of INP, CMDOK and MC_OK are as below:

PR command trigger method description

	Command source	Description					
STANDARD	DI: CTRG↑+POS1~6	Use DI: use POS1~6 to assign the triggered. program number, and triggered by rising edge of CTRG. Applicable occasions: PC or PLC issues commands via DI.					
DEDICATED	DI: STOP, SHOM	DI: when STOP is activated, the command will be held. DI: when SHOM is activated, it will perform homing.					
EVENT	DI: EV1~EV4	 DI: the status change of EV1~EV4 is used as a trigger. Set the program number in PF83 triggered by event rising edge. Set the program number in PF84 triggered by event falling edge. Applicable occasions: sensor, trigger the preset program. 					
SOFTWARE	PF82	When servo starts, directly write the program number in PF82 to trigger the program. (Panel and PC communication software can be used.) Applicable occasions: PC controls the servo drive via communication.					

7.4 Parameter setting of PR mode

Target speed: PF33~PF48, total 16 groups

	15~0 BIT
PF33~PF48	Target speed: 1 ~ 3000 (<i>rpm</i>)

Acceleration/deceleration time: PF49 ~ PF64, total 16 groups.

	15~0 BIT
PF49~PF64	Acceleration/deceleration time constant: 1 ~ 65500 (ms)
Delay time: PF65	~ PF80, Total 16 groups

	15~0 BIT
PF49~PF64	Delay time: 1 ~ 32767 (<i>ms</i>)

Relevant parameters of PR mode

	Parameter description
PA04	Homing mode setting
PA08	Homing high speed option 1
PA09	Homing low speed option 2
PE01	Homing path definition
PE02	Origin offset value definition
PF81	Protection trigger deceleration time
PF82	PR command trigger register(software)
PF86	Software forward limit
PF87	Software reverse limit
PE03~PE98	PATH#01~ PATH#48 parameter settings
PF01~PF30	PATH#49~PATH#63 parameter settings

Definition of PR program path

There are a total of 126 parameters which is PE03~PE98 & PF01~PF30 to set 63 groups of PR programs (PATH#01~PATH#63). PATH#01 can be set by PE03 and PE04, PATH#02 can be set by PE05 and PE06. . . PATH#48 can be set by PE97 and PE98, PF#49 can be set by PF01 and PF02. . . PATH#63 can be set by PF29 and PF30. Therefore, each 63 groups of PR program has two parameters to set its functions. The following introduces the 63 groups of PR programs, take the parameters PE03 and PE04 of PATH#01 as example, and the setting of the rest of the PR programs follows the same rule.

The first parameter of each PR program is the function setting parameter, the second parameter is the data setting parameter, the definition of the function setting parameter is shown in the following table: (take PATH#01 as an example)

	31~28	27~24	23~20	19~16	15~12	11~8	7~4	3~0 BIT	
PE03	-	-	-	-	-	-	Ι	TYPE	
PE04	DATA(32bit)								

In which, the TYPE determines the path form and function, its definition is as follows:

TYPE=1 is speed control, TYPE=2 is positioning control, TYPE=3 is auto positioning control, TYPE=7 is program jump, TYPE=8 is parameter writing, TYPE=A is indexing positioning control, and TYPE=2 or 3 are both positioning control, the difference is that TYPE=3 can automatically execute the next program, so there are five different control types including speed control, positioning control, program jump, parameter writing and index positioning.

Speed control(TYPE=1): its parameter definition shows in below table:(take PATH#01 for example)

	31~28	27~24	23~20	19~16	15~12	11~8	7~4	3~0 BIT		
PE03	х	x	DLY	х	DEC	ACC	OPT	1		
PE04	PE04 DATA(32bit): target speed(UNIT is determined by the OPT setting.)									

When this command is executed, the motor starts to accelerate (or decelerate) at current speed (not necessarily as 0), once the target speed is reached, the command is completed. After completion, the command continues to output at this speed without stopping.

The definition of OPT option is as follows:

OPT option								
Bit 7	Bit 6	Bit 5	Bit 4					
(0/8)	(0/4)	(0/2)	(0/1)					
x	UNIT (Unit)	AUTO (Auto execution)	INS (Interrupt)					

*Acceptable DI:STOP and software limit.

INS: if set as INS, it means the current PR will interrupt the previous PR during execution.

AUTO: when it reaches target speed, the next program will be automatically loaded.

UNIT: bit 6=0 unit is 0.1 rpm, Bit 6=1 unit is PPS (Pulse Per Second).

ACC/DEC: the value range is 0~F which can be set as the ACC/DEC time number, and its definition is as follows:

ACC/DEC value	F	Е	D	С	В	 4	3	2	1	0
Corresponding parameters	PF64	PF65	PF64	PF63	PF62	 PF53	PF52	PF51	PF50	PF49

DLY: the value range is 0~F which can be set as delay time number, and its definition is as follows:

DLY value	F	Е	D	С	В	 4	3	2	1	0
Corresponding parameters	PF80	PF79	PF78	PF77	PF76	 PF69	PF68	PF67	PF66	PF65

Positioning control: when TYPE=2, the motor will stop after completion. When TYPE=3, the motor will automatically execute the next path after completing current path.(take PATH#01 for example).

	31~28	27~24	23~20	19~16	15~12	11~8	7~4	3~0		
								BIT		
PE03	х	x DLY SPD DEC ACC OPT 2 or 3								
PE04	DATA(32bit): target position, Unit: pulse									

The definition of OPT option is as follows:

OPT option							
Bit 7	Bit 6	Bit 5	Bit 4				
(0/8)	(0/4)	(0/2)	(0/1)				
CMD	ind type)	OVLP	INS				
(Comma		(overlap)	(Interrupt))				

	CMD option								
BIT 7	BIT 6	Description							
0	0	Absolute positioning command (position command=DATA)							
0	1	Relative positioning command (Position command=current feedback+DATA)							
1	0	Incremental positioning command(position command=the end of previous command+ DATA)							

* Acceptable DI:STOP and software limit!

INS: if set as INS, it means the current PR will interrupt the previous PR.

OVLP: allow overlap to the next path. Set DLY to 0 when overlapping.

CMD: the calculation of the position command ending is shown in the above table.

ACC/DEC: the value range is 0~F which can be set as the acceleration/deceleration time number, and its definition is as follows:

ACC/DEC value	F	E	D	С	В	 4	3	2	1	0
Corresponding parameters	PF64	PF65	PF64	PF63	PF62	 PF53	PF52	PF51	PF50	PF49

SPD: the value range is 0~F which can set as the target speed number, and its definition is as follows:

SPD value	F	Ш	D	С	В	 4	3	2	1	0
Correspondin g parameters	PF48	PF47	PF46	PF45	PF44	 PF37	PF36	PF35	PF34	PF33

DLY: the value range is 0~F which can be set as delay time number, and its definition is as

follows:

DLY value	F	E	D	С	В	 4	3	2	1	0
Corresponding parameters	PF80	PF79	PF78	PF77	PF76	 PF69	PF68	PF67	PF66	PF65

Program jump: when TYPE=7, it can jump to the specified PR program number. (Take PATH#01 as an example)

	31~28	27~24	23~20	19~16	15~12	11~8	7~4	3~0 BIT	
PE03	х	х	DLY	х	х	х	OPT	7	
PE04	PATH_NO: specified PR program number, range(1~63), if set to 0, it stops.								

PATH_NO: jump target program number.

The definition of OPT option is as follows:

OPT option									
Bit 7	Bit 6	Bit 5	Bit 4						
(0/8)	(0/2)	(0/1)							
×									
X	X	Х	(interrupts)						

INS: if set as INS, it means the current PR will interrupt the previous PR.

DLY: the value range is 0~F which can be set as delay time number, and its definition is as follows:

DLY value	F	Е	D	С	В	 4	3	2	1	0
Corresponding parameters	PF80	PF79	PF78	PF77	PF76	 PF69	PF68	PF67	PF66	PF65

Parameter writing: when TYPE=8, it enable to write specified parameter(take PATH#01 for example).

	31~28	27~24	23~20	19~16	15~12	11~8	7~4	3~0 BIT	
PE03	х	SOUR	DLY	Target w	riting para	ameter	OPT	8	
PE04	Source (constant value or parameter number)								

The definition of OPT option is as follows:

	OPT option									
Bit 7	Bit 6	Bit 5	Bit 4							
(0/8)	(0/4)	(0/2)	(0/1)							
V	ROM	AUTO	INS							
Х	(Write in ROM)	(Automatic execution)	(Interrupt)							

INS: if set to INS, it means the current PR will interrupt the previous PR.

AUTO: execute the next PR path automatically when the current PR is completed.

ROM: when BIT6=0, it means the parameter will not write to EEPROM, when Bit 6=1, it means the parameter will write to EEPROM in the meantime.

Target writing parameter: the group and number of the writing parameter can be set.

Target writing parameter										
Bit 16~19	Bit 16~19 Bit 12~15 Bit 11~8									
Parameter group	Parameter nu	mber(Decimal)								
$A \rightarrow 1$ $B \rightarrow 2$ $C \rightarrow 3$ $D \rightarrow 4$ $E \rightarrow 5$ $F \rightarrow 6$	P⊡05 P⊡45 P⊡98 P⊡77	5→05 5→45 3→98 7→77								

(For example: if the writing target parameter is PF34, you can set to 634)

DLY: the value range is 0~F, it can be set as delay time number, and its definition is as follows:

DLY value	F	Е	D	С	В	 4	3	2	1	0
Corresponding parameters	PF80	PF79	PF78	PF77	PF76	 PF69	PF68	PF67	PF66	PF65

SOUR: it is used to set the data source. There are two options: constant or parameter value.

	SOUR	option	Description		
Bit 27	Bit 26 (SOUR)	Bit 25	Bit 24	Data source	Write destination
х	0	х	х	Constant	P□XX
х	1	х	х	P□XX	P□XX

□: parameter group(A~F) XX: parameter number

Source: it has different definition according to SOUR setting as shown in the following table

				Sou	rce						
	31~28	1~28 27~24 23~20 19~16 15~12 11~8 7~4 3~0 bit									
SOUR =0		Constant									
SOUR =1	Rsvd (0x00000) P_Grp P_idx										

P_Grp, P_idx: the specified writing parameter group and number.

Constant: constant data to be written.

If the written value exceeds the parameter value range, AL.63 will be displayed. If P_Grp is out of range, AL.61 will be displayed. If P_Idx is out of range, AL.62 will be displayed. If some parameters cannot be written in when SON is ON, AL.64 will be displayed and the following PR command will stop automatically.

Index positioning(Indexing): when TYPE=A, it can be applied in turret application. (Take PATH#01 for example)

	31~28	27~24	23~20	19~16	15~12	11~8	7~4	3~0 BIT				
PE03	X OPT2 DLY SPD DEC ACC OPT A											
PE04	DATA (0~4194304): index coordinate command, unit:pulse											

The definition of OPT is as follows:

OPT option			
Bit 7 (0/8)	Bit 5 (0/2)	Bit 4 (0/1)	
00: always forward (CC)	W)		
01: always reverse(CVV)		OVLP	INS
10:shortest path.	(overlap)	(interrupt)	
(Judging by current pos	ition and target position)		

INS: if set as INS, it means the current PR will interrupt the previous PR.

OVLP: it allows to overlap the next PR command. Set DLY as 0 when it is used.

ACC/DEC: the value range is 0~F and it can be set as acceleration / deceleration time number, its definition is as follows:

ACC/DEC value	F	E	D	С	В	 4	3	2	1	0
Corresponding parameters	PF64	PF65	PF64	PF63	PF62	 PF53	PF52	PF51	PF50	PF49

SPD: the value range is 0~F and it can be set as target speed number, its definition is as below:

SPD value	F	Е	D	С	В	 4	3	2	1	0
corresponding parameters	PF48	PF47	PF46	PF45	PF44	 PF37	PF36	PF35	PF34	PF33

DLY: the value range is 0~F and it can be set as delay time number, its definition is as follows:

DLY value	F	Е	D	С	В	 4	3	2	1	0
Corresponding parameters	PF80	PF79	PF78	PF77	PF76	 PF69	PF68	PF67	PF66	PF65

The definition of OPT2 option is as follows:

	OPT2 option										
Bit 27 Bit 26 Bit 25 Bit 24											
(0/8)	(0/4)	(0/2)	(0/1)								
x AUTO S_LOW											

S_LOW: the speed unit options.

S_LOW =0 means the speed unit is 0.1 rpm.

S_LOW =1 means the speed unit is 0.01 rpm.

S_LOW =2 means the speed unit is1 rpm.

AUTO: execute the next PR path when the current PR completes

DATA: set each indexing positioning coordinate value.

DATA format	
Pulse: 0~1048575	

Homing definition: set by PE01 and PE02.

	31~28	27~24	23~20	19~16	15~12	11~8	7~4	3~0 BIT				
PE01	BOOT	х	DLY	х	DEC1	ACC	CC PATH					
PE02	ORG_D	ORG_DEF (32 bit)										

PATH: set the action after homing, and its definition is shown in the table below:

		PATH option
Bit 4~7	Bit 0~3	Description
0	0	Stop after homing.
0	1	Execute PATH#01 after homing
0	2	Execute PATH#02 after homing
2	۲	~
3	E	Execute PATH#62 after homing
3	F	Execute PATH#63 after homing

ACC: the value range is 0~F and it can be set as acceleration time number, its definition is as follows:

ACC value	F	Е	D	С	В	 4	3	2	1	0
Corresponding	DE64	DE65		DE63	DE62	DE53	DE52	DE51	DE50	
parameters	1104	1105	1104	1105	1102	 1155	11.52	1151	1150	1143

DEC1: the value range is 0~F, and it can be set as the first deceleration time number, its definition is shown as below:

ACC value	F	Е	D	С	В	 4	3	2	1	0
Corresponding	PF64	PF65	PF64	PF63	PF62	PF53	PF52	PF51	PF50	PF49
parameters	1104	1100	1104	1100	1102	 1100	1152	1151	1100	1145

The second deceleration time is same as the STP deceleration time in PF81.

DLY: the value range is 0~F and it can be set as delay time number, its definition is as follows:

DLY value	F	Е	D	С	В	 4	3	2	1	0
Corresponding	PF80	PF79	PF78	PF77	PF76	PF69	PF68	PF67	PF66	PF65
parameters	1100	1173	1170		1170	 1103	1100	1107	1100	1100

BOOT: to set whether to execute the homing when the servo is started for the first time.

	BOOT option						
Bit 28~31	Description						
0	NOT execute homing when servo starts for the first time						
1	Execute homing when servo starts for the first time						

ORG_DEF: the coordinate value of the origin and it may not be 0.

ORG_DEF format
Pulse: (−2 ³¹) ~ (2 ³¹ -1)

The servo does not provide origin stop mode option, which is to set whether to pull back to the origin after completion! Since the motor must decelerate to stop after the origin is found (origin signal or Z pulse), and the stop position will be a little ahead over the origin as shown in the figure below:

If pull back is not needed, set PATH to 0.

If pull back is needed, set PATH=A , which means the servo will execute PATH#A automatically after homing when PATH#A is set to absolute command for positioning control and command value =ORG_DEF.

The homing does not define an offset value (Offset), and it uses PATH to specify a path as the offset value! It is recommended to use absolute positioning command for this path, and set the command value = offset value(value of absolute coordinates).

7.5 PR sequence status

In PR mode, all 63 groups of programs can be set as five control types: speed control, positioning, path jump, parameter writing and index positioning. As these 63 programs can perform various control combinations according to the settings, the PR mode of SDP servo provides three sequences which could be linked to the other PR: 1. automatically execute the next program (AUTO), 2.interrupt (INS), 3, overlap (OVLP). Among them, AUTO and interrupt can be applied in all five control types, but the overlap function can only be used when one positioning control program follows by another positioning control program. The following introduces the three different sequences:

1. **Sequential command:** if INS and OVLP are not set in PR, the program will follow the original setting sequence. If the previous program has set to AUTO sequences, the next program will execute automatically after the setting delay time when the previous program is completed.

2. **Overlapping command:** if the previous and next program are both positioning control program, overlap function can be set in the previous program to enable overlapping to the next positioning control, which will make the two positioning control to transit smoothly, and reduce the vibration during transition.

3. **Interrupt command:** it indicates that the current PR will immediately replace or combined by another command before completion. The result of the final command will be varied according to different control types.

Sequential command(AUTO): use the AUTO function to generate a fixed sequence of program command combinations.

PATH#12 (AUTO positioning control, incremental positioning path: 104857600 pulse, delay time: 200ms) \rightarrow PATH#13(Positioning control, absolute positioning: 0 pulse).

As shown in the figure below, which is a typical sequential command of positioning control followed by positioning control. In positioning control, the delay time starts counting after the positioning is completed.

PATH#12(AUTO speed control, target speed: 2000 rpm, delay time: 200ms) \rightarrow PATH#13 (Positioning control, absolute positioning: 0 pulse)

As shown in the figure below, it is a typical sequential command of speed control followed by positioning control. In speed control, the delay time will start counting after the positioning is completed.

Overlapping command(OVLP): in the sequential command, if one positioning control is followed by another positioning control, the former positioning will control the overlapping of the latter positioning control commands. Overlap is that the acceleration of latter command overlaps the deceleration of former command immediately, and helps this 2 positioning control to transit smoothly.

PATH#12(AUTO positioning control, overlap, incremental positioning path: 104857600 pulse, target speed: 500 rpm, ACC: 400 ms) \rightarrow PATH#13(Positioning control, incremental positioning path: 104857600 pulse, target speed: 700 rpm, delay time: 0 ms, DEC: 200 ms).

From the figure below, it can be observed that the two positioning commands can be transited very smoothly by the overlapping function, and the speed vibration during program switching is reduced.

Speed PATH#13 PATH#12 Time

Interrupt command(INS): it can be applied in any control type, and it is always be set in the latter program. PR mode of SDP servo provides internal INS and external INS.

1.Internal INS: which is a sequential command with interrupt setting in the latter program. The biggest difference from the sequential command is the definition of the delay time. The delay time of sequential commands is calculated from when the target position or target speed is reached, but internal INS is calculated from the beginning of the former program, as shown in the following example.

PATH#12(AUTO positioning control, incremental positioning path: 10485760 pulse, target speed: 600 rpm, delay time: 1500 ms, ACC: 200 ms, DEC: 200 ms) \rightarrow PATH#13(Positioning control, with INS command, incremental positioning path: -10485760 pulse, target speed: 600 rpm, delay time: 0 ms, ACC: 200 ms, DEC: 200 ms).

The execution result of this program is shown in the figure below, and the internal interruption helps the entire control program to manage time easily.

The delay time of internal INS should not be less than the completion time of the program, otherwise it will interrupt by the latter program before the former program is completed, as shown in the figure below:

2.External INS: the biggest difference between internal INS and external INS is the trigger of the latter program with INS. The former is planned by sequential commands, and the latter is triggered by external triggers. In addition, the delay time setting in the previous program is invalid when the external interrupt occurs. As shown in below example:

PATH#12(AUTO positioning control, incremental positioning path: 10485760 pulse, target speed: 600 rpm, delay time: 1500 ms, ACC: 200 ms, DEC: 200 ms) \rightarrow PATH#13(Positioning control, with INS, incremental positioning path: -10485760 pulse, target speed: 600 rpm, delay time: 0 ms, ACC: 200 ms, DEC: 200 ms).

The above is a preset program control flow, if an external DI triggers PATH#07 at 400ms (positioning control, with INS, absolute positioning coordinate: 0 pulse, target speed: 3000 rpm, delay time: 0 ms, ACC: 200 ms, DEC: 200 ms), the execution result of the program is shown in below. Once the external INS occurs, the external INS program will replace the original sequential command and execute immediately, so the external interruption can be used for an emergency treatment.

In addition, if a new program is externally triggered during executing a program, which is not set interruption, you must wait for the complete of the executing program before starting the triggered program, as shown in the figure below:

8. Parameters

8.1. Parameter definitions

From the perspective of safety and frequency of use, Shihlin drive parameters have below types: basic parameters, gain and filter parameters, expansion parameters, and input/output setting parameters. When you want to adjust parameter reading and writing permissions, you can modify the setting of PA42 to change the setting of expansion parameters.

The following are the precautions of parameter setting.

1. Parameter type classification

In section 8.2, parameters are classified into a parameter list according to its function, which is for the users to use conveniently. For detailed parameter descriptions you can refer to section 8.3.

2. Special symbols for parameter codes

(
) the setting is vanished once power is off.

(*) the setting is valid after power cycling, such as PA01.

(▲) You are not able to set the parameter when Servo is ON, such as PA07. And there are 2 ways to switch off the servo.

- (1) Turn off the SON DI signal.
- (2) Set SON signal to 0 by changing PD16, and ensure to restore PD16 after completion of the modification.

Parameter group	Main content
Basic parameter	When the servo drive is used to perform position control, you need
(No PA□□)	to set these basic parameters.
Gain, filter parameter	When the servo drive is used to perform manual gain adjustment,
(No PB□□)	you need to set these parameters.
Expansion setting	This is the main parameter group used when speed control and
parameter	torque control mode is applied
(No PC□□)	
Input/output setting	
parameter	Used to change the output/input signal of the servo drive.
(No PD□□)	

Below is the group classification according to different functions.

Pr path parameter 1	Poloted perometer group 1 for Dr position path assignment				
(No PE□□)	Related parameter group 1 for Pr position path assignment.				
Pr path parameter 2	Poloted perometer group 2 for Dr position path assignment				
(No PF□□)	Related parameter group 2 for Pr position path assignment.				

The description of control mode is as follows:

	Mode name	Mode code	Description
	Position mode (terminal input)	Pt	Drive receives the external position pulse command which is input from terminal, and runs the motor to the target position.
node	Position mode (internal register input)	Pr	The drive receives the position command which is provided by the internal register and runs the motor to the target position. You can use the DI signal to select the register number.
Single m	Speed mode.	S	The drive receives the speed command and runs the motor to the target speed. The speed command can be selected by the DI signal between analog voltage command or internal speed command(7 groups of register).
	Torque mode	т	The drive receives torque command and runs the motor to the target torque. The torque command is provided by analog voltage command and internal torque command.
		Pt-S	Pt/S is switched mutually via the signal of DI(LOP).
		Pt-T	Pt/T is switched mutually via the signal of DI(LOP)
		Pr-S	Pr/S is switched mutually via the signal of DI(LOP)
	<u>a</u>	Pr-T	Pr/T is switched mutually via the signal of DI(LOP)
	ou-	S-T	S/T is switched mutually via the signal of DI(LOP)
	lulti	Pt-Pr	Pt/Pr is switched mutually via the signal of DI(Pt-Pr)
	2	Pt-Pr-S	Pt/Pr/S is switched mutually via the signal of DI(LOP+Pt-Pr).
		Pt-Pr-T	Pt/Pr/T is switched mutually via the signal of DI(LOP+Pt-Pr).

8.2. List of Parameters

The parameters of Shihlin servo are mainly classified into four categories, they are PA parameter group ~ PF parameter group. PA parameters are basic parameters, such as control mode selection, auto tuning function, etc. The PB parameters are gain and filter parameters. The PB parameters helps the servo motor to run in a more stable state. PC parameters are extension parameters, which includes parameters for speed mode, torque mode, analog relative parameter and communication setting parameter are also included. PD parameters are input and output setting parameters, which are mainly used to set the user-defined DI and DO parameters. PE and PF parameters are Pr path assignment related parameter. The following table will list all the parameters of Shihlin servo drive, which is easier for the user to enquiry.

NO	Abbreviation	Nomo	Default	l lmit	Con	trol	trol mode			
NO	Appreviation	Name	value	Unit	Pt	Pr	S	Т		
PA01(*)	STY	Control mode setting	1000h	N/A	0	0	0	0		
PA02(▲)	ATUM	AUTO tuning mode setting	0002h	N/A	0	0	0			
PA03	ATUL	Auto-tuning response level setting	10	N/A	0	0	0			
PA04	HMOV	Homing mode	0000h	N/A		0				
PA05	TL1	Internal torque limit 1	100	%	0	0	0	0		
PA06	CMX	Electronic gear numerator	1	N/A	0	0				
PA07(▲)	CDV	Electronic gear denominator	1	N/A	0	0				
PA08	HSPD1	Homing high speed option 1	100	rpm, mm/s		0				
PA09	HSPD2	Homing high speed option 2	20	rpm, mm/s		0				
PA10	RES1	Regenerated resistor value	Depend	Ohm	0	0	0	0		
PA11	RES2	Regenerated resistor capacity	model	Watt	0	0	0	0		
PA12	INP	In-position range	41943	Pulse	0	0				
PA13(*)	PLSS	Command pulse option	0000h	N/A	0					
PA14(*)	ENR	Encoder output pulses number	10000	Pulse/rev Pulse/mm	0	0	0	0		

(1) Basic parameters

NO	Abbreviation	Nama	Default	llmit	Control mode				
NO	Appreviation	Name	value	Unit	Pt	Pr	S	Т	
PA15	CRSHA	Motor crash protect level(torque percentage)	0	%	0	0	0	0	
PA16	CRSHT	Motor crash protect level (protection time)	1	ms	0	0	0	0	
PA17	OVL	Output overload DO warning level	120	%	0	0	0	0	
PA18	OVS	Over speed warning level	6300	rpm, mm/s	0	0	0	0	
PA19	OVPE	Position deviation excess output level	3* 2 ²²	Pulse	0	0			
PA20(*)	OVPL1	Position pulse frequency excess level 1(the AB phase command pulse can reach 16M)	4500	kHz	0				
PA22(*)	DBF	Dynamic brake control	0	N/A	0	0	0	0	
PA23(∎)	MCS	Memory write-inhibit function	0	N/A	0	0	0	0	
PA24(*)	PRES	Resolution of linear scale for full-closed loop control	5000	pulse/rev	0	0			
PA25	PERR	Protection range for feedback position error between motor encoder and linear scale	30000	Pulse	0	0			
PA26(▲)	FCON	Linear scale for full-closed loop switch	0000	N/A	0	0			
PA27	FELP	Low-pass filter time constant for full-closed and semi-closed loop	100	ms	0	0			
PA28(*)	ABS	Absolute encoder setting	0000h	N/A	0	0	0	0	
PA29(∎)	CAP	Absolute position reset	0000h	N/A	0	0	0	0	
PA30(∎)	UAP	Update encoder absolute position	0	N/A	0	0	0	0	
PA31	APST	Absolute coordinate system status	0000h	N/A	0	0	0	0	
PA32	APP	Encoder absolute position (pulse number)	0	Pulse	0	0	0	0	

NO	Abbroviation	Nama	Default	l loit	Con	Control mode				
NO	Appreviation	Name	value	Unit	Pt	Pr	S	Т		
		Encoder absolute position	0	FO) (
PA33	APR	(revolution number)	0	rev	0	0	0	0		
DA24(*)		I/O communication of	0	NI/A						
FA34()		absolute system	0		0	0	0	0		
PA35(*)	FNO1	Function option 1	0000h	N/A	0	0	0	0		
PA36(*)	FNO2	Function option 2	0000h	N/A	0	0	0	0		
PA37(*)	FNO3	Function option 3	0000h	N/A	0	0	0	0		
PA38	AOP3	One-touch tuning function	0000h	N/A	0	0	0			
		option								
PA39(*)	POL	Motor rotation direction	0000h	N/A	0	0	0	0		
		option					<u> </u>			
PA40(▲)	SPW	Special parameter write	0000h	N/A	0	0	0	0		
		option					<u> </u>			
PA41	POSPD	Max. speed setting of	6300	rpm,	0	0	0	0		
		pulse output		mm/s			<u> </u>			
PA42(*)	BLK	Parameter group	0000h	N/A	0	0	0	0		
		white-inhibit setting	N1/A	N1/A						
PA43(*)	ENB	Encoder type(read-only)	N/A	IN/A	0	0	0	0		
PA44(*)	EGM	Electronic gear ratio	0	N/A	0	0				
								-		
$P\Delta 45(\mathbf{A})$	FBP	number setting per	10000	Pulse	0	0				
17(40(▲)		revolution	10000	1 0150	Ŭ					
		One-touch gain tuning								
PA46(∎)	ATST	option (factory setting.	0000h	N/A	0	0	0			
		forbidden to use)								
PA47	TLP	Positive torque limit value	5000	0.1%	0	0	0	0		
DA 40	TIN	Negative torque limit	5000	0.40/						
PA48		value	5000	0.1%	0	0	0	0		
	нито	Homing-Torque detection	50	0/_		~				
1 743		level(range: 1~300)	50	/0						
PA50	нмтот	Homing-Torque attained	2000	ms		0				
PA50	HMIQI	time(range: 2~2000)	2000	115						

(2) Gain, filter parameters

NO	Abbroviation	Name	Default		Cor	ntrol	ol mode			
	Appreviation	Name	value	Unit	Pt	Pr	S	Т		
		Frequency of Machine								
PB01	NHF1	resonance suppression	1000	Hz	0	0	0	0		
		filter 1								
		Attenuation rate of								
PB02	NHD1	machine resonance	0	dB	0	0	0	0		
		suppression filter 1								
		Resonance suppression	10	0.1mg			0	0		
PDU3	INLP	low-pass filter	10	0.1115	0	0	0	0		
	DOT	Position command filter	2							
PB04	P31	time constant	3	ms	0	0				
DDOC		Position feed-forward	0	0.0004		_				
PB05	FFC	gain	0	0.0001	0	0				
PB06	GD1	motor load inertia ratio	70	0.1 times	0	0	0			
PB07	PG1	Position loop gain	45	rad/s	0	0				
PB08	VG1	Speed loop gain	183	rad/s	0	0	0			
PB09	VIC	Speed integral gain	34	ms	0	0	0			
PB10	VFG	Speed feed-forward gain	0	%			0			
PB11(*)	CDP	Gain switch option	0000h	N/A	0	0	0			
				Kpps,						
	000	Gain switch condition	10	rpm,	0					
PB12	CDS	value		pulse,		0	0			
				mm/s						
PB13	CDT	Gain switch time constant	1	ms	0	0	0			
	0.50	Servo motor load inertia		0.1						
PB14	GD2	ratio 2	70	times	0	0	0			
		Position loop gain change								
PB15	PG2	ratio	100	%	0	0				
	1/00	Speed loop gain change	100							
PB16	VG2	ratio	100	%	0	0	0			
		Speed integral gain								
PB17	VIC2	change ratio	100	%	0	0	0			
		Speed command								
PB18	SFLT	low-pass filter smooth	0	ms			0	0		
		time constant	-							

NO	Abbreviation	Nama	Default	Unit	Cor	ntrol mode			
NO		Name	value	Unit	Pt	Pr	S	Т	
PB19	TQC	Torque command filter time constant	0	ms				0	
DB20		Speed feedback filter	0	0.1mc		0	0	0	
FDZU	SJH	time constant	0	0.1115	0	0	0	0	
		Frequency of machine							
PB21	NHF2	resonance suppression	1000	Hz	0	0	0	0	
		filter 2							
		Attenuation of machine							
PB22	NHD2	resonance suppression	0	dB	0	0	0	0	
		filter 2							
PB23		Reserved							
PB24	VDC	Speed differential compensation	980	N/A	0	0	0		
		Frequency of machine							
PB25	NHF3	resonance suppression	1000	Hz	0	0	0	0	
		filter 3							
	NHD3	Attenuation of machine							
PB26		resonance suppression	0	dB	0	0	0	0	
		filter 3							
PB27	ANCE	Auto resonance	1	Ν/Δ	0	0	0	0	
		suppression mode setting		1 1/7 1	Ŭ	0	0	0	
PB28	ANCL	Auto resonance	50	%	0	0	0	0	
	/	suppression detection level		,,,	-	_	_	_	
		Auto low frequency							
PB29	AVSM	vibration suppression	0	N/A	0	0			
		mode							
PB30	VCL	Low-frequency vibration	50	pulse	0	0			
		detection level setting							
DD21		Low frequency vibration	1000	0 1 47		~			
PB31	V3F1	suppression frequency	1000	0.102	0	0			
		Low froquency vibration							
PB32	VSG1		0	N/A	0	0			
		low frequency vibration							
PB33	VSF2	suppression frequency	1000	0.1Hz	0	0			
r DJJ	V 01 Z	setting 2							

NO	Abbroviation	Nomo	Default	Unit	Cor	ontrol		de
NO			value	Unit	Pt	Pr	S	Т
PB34	VSG2	Low frequency vibration suppression gain 2	0	N/A	0	0		
PB35	FRCL	Friction compensation level	0	%	0	0	0	
PB36	FRCT	Friction compensation smoothing time constant	0	ms	0	0	0	
PB37	FRCM	Friction compensation mode option	0	N/A	0	0	0	
PB38	FFCT	Position feed-forward filter time constant	0	ms	0	0		
PB39 (▲)	SVP	Synchronous speed control gain	0	rad/s	0	0	0	0
PB40 (▲)	SVI	Synchronous speed integral compensation	0	rad/s	0	0	0	0
PB41 (▲)	SPI	Synchronous position integral compensation	0	Rad	0	0	0	0
PB42 (▲)	SBW	Synchronous control bandwidth	0	Hz	0	0	0	0
PB43	SVL	Synchronous speed error low-pass filter	0	0.1ms	0	0	0	0
PB44	PPD	Position loop compensation gain	0	N/A	0	0		
PB45	NHF4	Frequency of machine resonance suppression filter 4	1000	Hz	0	0	0	0
PB46	NHD4	Attenuation of machine resonance suppression filter 4	0	dB	0	0	0	0
PB47	NHF5	Frequency of machine resonance suppression filter 5	1000	Hz	0	0	0	0
PB48	NHD5	Attenuation of machine resonance suppression filter 5	0	dB	0	0	0	0
PB50	MVF	Position command average filter time constant	0	ms	0	0		

NO	Abbroviation	tion Name Default Unit	Cor	ntrol	mo	de		
NO	Appreviation	Name	value	Unit	Pt	Pr	S	Т
		Bandwidth of machine						
PB51	NHW1	resonance suppression	5	N/A	0	0	0	0
		filter 1						
		Bandwidth of machine						
PB52	NHW2	resonance suppression	5	N/A	0	0	0	0
		filter 2						
		Bandwidth of machine						
PB53	NHW3	resonance suppression	5	N/A	0	0	0	0
		filter 3						
		Bandwidth of machine						
PB54	NHW4	resonance suppression	5	N/A	0	0	0	0
		filter 4						
		Bandwidth of machine						
PB55	NHW5	resonance suppression	5	N/A	0	0	0	0
		filter 5						
PB56		Reserved						
DR57(*)	TOF	z-axis torque	0	0.1%		0	0	0
1 057()		compensation	0	0.170	0	0	0	0
		Attenuation of						
PB58	VSD1	low-frequency	80	dB	0	0		
1 000		suppression 1	00	UD .		Ŭ		
		Attenuation of						
PB59	VSD2	low-frequency	80	dB	0	0		
		suppression 2						

(3) Extension parameters

NO	Abbroviation	Nama	Default	Unit	Со	Control mo		ode
NU	Appreviation	Name	value	Unit	Pt	Pr	S	Т
PC01	STA	Acceleration time constant	200	ms			0	0
PC02	STB	Deceleration time constant	200	ms			0	0
PC03	STC	S-curve acceleration/deceleration time constant	0	ms		0	0	0
PC04	JOG	JOG speed command	300	rpm, mm/s	0	0	0	0
PC05	SC1	Internal speed command 1	100	rpm, mm/s			0	0
PC06	SC2	Internal speed command 2	500	rpm, mm/s			0	0
PC07	SC3	Internal speed command 3	1000	rpm, mm/s			0	0
PC08	SC4	Internal speed command 4	200	rpm, mm/s			0	0
PC09	SC5	Internal speed command 5	300	rpm, mm/s			0	0
PC10	SC6	Internal speed command 6	500	rpm, mm/s			0	0
PC11	SC7	Internal speed command 7	800	rpm, mm/s			0	0
PC12 (▲)	VCM	Maximum motor speed for analog speed command	3000	rpm, mm/s			0	0
PC13 (▲)	TLC	Maximum output of analog torque command	100	%	0	0	0	0
PC14	MOD	Analog monitor output	0100h	N/A	0	0	0	0
PC15(*)	SVZR	Analog input voltage zero voltage range	10	mV			0	0
PC16	MBR	Electromagnetic brake sequence output time	100	ms	0	0	0	0
PC17	ZSP	Zero speed range	50	rpm, mm/s	0	0	0	0
PC18(*)	COP1	Stop option and power interruption / restart option	0010h	N/A	0	0	0	0

NO	Abbrovistion	Nama	Default	110:4	Со	ntro	l mode		
NU	Appreviation	Name	value	Unit	Pt	Pr	S	Т	
PC19(*)	COP2	Alarm record clear option	0000h	N/A	0	0	0	0	
PC20(*)	SNO	Servo drive communication device number	1	N/A	0	0	0	0	
PC21(*)	CMS	Communication mode setting	0	N/A	0	0	0	0	
PC22(*)	BPS	Communication protocol setting	0010h	N/A	0	0	0	0	
PC23	SIC	Serial communication timeout option	0	S	0	0	0	0	
PC24(*)	DMD	Drive status display option	0000h	N/A	0	0	0	0	
PC25	TL2	Internal torque limit 2	100	%	0	0	0	0	
PC26	VCO	Analog speed command offset	0	mV			0	0	
PC27	TLO	Analog torque limit offset	0	mV			0	0	
PC28	MO1	Analog monitor MON1 voltage offset	0	mV	0	0	0	0	
PC29	MO2	Analog monitor MON2 voltage offset	0	mV	0	0	0	0	
PC30	MOG1	Analog monitor MON1 output proportion	100	%	0	0	0	0	
PC31	MOG2	Analog monitor MON2 output proportion	100	%	0	0	0	0	
PC32	CMX2	Electronic gear numerator 2	1	N/A	0	0			
PC33	СМХЗ	Electronic gear numerator 3	1	N/A	0	0			
PC34	CMX4	Electronic gear numerator	1	N/A	0	0			
PC35(*)	VCL	Analog speed voltage limit	0	mV			0	0	
PC36	VMFT	VC/VLA speed voltage linear filter time constant	0	0.1ms			0	0	
PC37(*)	DTA9	AL.09 initialization delay time	0	ms	0	0	0	0	
PC38(*)	FNO4	Function option 4	0000h	N/A	0	0	0	0	
PC39	LPS	Low-pass setting option	0000h	N/A	0	0	0	0	
PC40	MBR2	Electromagnetic brake MBR activate delay time	0	ms	0	0	0	0	

NO	Abbroviation	Nomo	Default	11:0:1	Control n		l mo	ode
NO	Appreviation	Name	value	Unit	Pt	Pr	S	Т
PC41	CAST	Capture: start address of data array	0	N/A	0	0	0	0
PC42(∎)	CAAX	Capture: axis position	0	Source pulse	0	0	0	0
PC43(∎)	CAND	Capture: number of capturing times	1	N/A	0	0	0	0
PC44(∎)	CACT	Capture: activate control option	0x2010	N/A	0	0	0	0
PC45	CPRS	Capture: reset position after first data captured	0	Source pulse	0	0	0	0
PC46	СРМК	Capture: masking range	0	Source pulse	0	0	0	0
PC47	CMST	Compare: start address of data array	0	N/A	0	0	0	0
PC48(∎)	CMAX	Compare: axis position	0	Source pulse	0	0	0	0
PC49(∎)	CMNO	Compare: number of comparing times	1	N/A	0	0	0	0
PC50(∎)	СМСТ	Compare: activate control	0x0064 0010	N/A	0	0	0	0
PC51	CMOF1	Compare: data shift	0	Source pulse	0	0	0	0
PC52(∎)	CMOF2	Compare: data shift(can reset to zero)	0	Source pulse	0	0	0	0
PC53	CSAX	Position for synchronous capture axis	0	Source pulse		0		
PC54	CSDS	Interval between each synchronous capture action	100	Source pulse		0		
PC55	CPEX	Capture/Compare additional function setting	0x0000	N/A	0	0	0	0
PC56	CSDS	Pulse error for synchronous capture axis	0	Source pulse		0		
PC57	CSDS	Maximum correction rate for synchronous capture axis	10	%		0		

		Nama	Default	11	Со	ontrol mo		ode
NO	Abbreviation	Name	value	Unit	Pt	Pr	S	Т
PC58	CSOF	Error offset compensation for synchronous Capture axis	0	Source pulse		0		
PC59	ECHD	E-Cam: start address of data array	100	N/A		0		
PC60	ECMN	E-Cam: segment number (N)	5	N/A		0		
PC61	ECMM	E-Cam: cycle number (M)	1	N/A		0		
PC62	ECMP	E-Cam: master axis pulse number (P)	3600	N/A		0		
PC63	ECME	E-Cam: engaged segment number	0	N/A		0		
PC64(∎)	ECAX	E-Cam: master axis position	0	Source pulse		0		
PC65	PLED	E-Cam:initial lead pulse before engaged	0	Source pulse		0		
PC66(∎)	ECON	E-Cam: activate E-Cam control	0x0000 0000	N/A		0		
PC67	ECRD	E-Cam: pulse number upon disengagement	0	Source pulse		0		
PC68	CPCT	Compensation time for the pulse of E-Cam master axis	0	ms		0		
PC69	CPCL	Minimum frequency of pulse compensation for the E-Cam master axis	0	Kpps		0		
PC70	CMAP1	DO:CAM_AREA1 rising-edge phase	0	Degree		0		
PC71	CMAN1	DO:CAM_AREA1 falling-edge phase	0	Degree		0		
PC72	CMAP2	DO:CAM_AREA2 rising-edge phase	0	Degree		0		
PC73	CMAN2	DO:CAM_AREA2 falling-edge phase	0	Degree		0		
PC74	PLED2	E-Cam pre-engaged pulse number	0	N/A		0		

NO	Abbroviation	Nama	Default	Default Co		Control m		ode
NU	Appreviation	Name	value	Unit	Pt	Pr	S	Т
PC75	TQ1	Inner torque command 1	100	%				0
PC76	TQ2	Inner torque command 2	100	%				0
PC77	TQ3	Inner torque command 3	100	%				0
		Filter setting for						
PC78	CXFT	synchronous capture axis	0000h	N/A		0		
		Correction						
PC70		E-Cam phase alignment:	000000	Ν/Δ		0		
1073		operation setting	00h			Ŭ		
PC80		DI delay time for E-Cam	0	116		0		
1 000		phase alignment	0	μσ		Ŭ		
PC81	ALTG	E-Cam phase alignment:	0	Source		0		
1 001		target position	0	pulse		Ŭ		
PC82	ALCT	E-Cam alignment: control	0000h	N/A		0		
1 002		switch	000011			Ŭ		
PC83	CMSK	E-Cam master axis pulse	0000h	N/A		0		
1 000		masking setting	000011			Ŭ		
		Motion control macro						
PC84	CSDS	command: command	0	N/A	0	0	0	0
		parameter#4						
		Motion control macro						
PC85	CSDS	command: command	0	N/A	0	0	0	0
		parameter#3						
_		Motion control macro						
PC86	CSDS	command: command	0	N/A	0	0	0	0
		parameter#2						
		Motion control macro						
PC87	CSDS	command: command	0	N/A	0	0	0	0
		parameter#1						
		Motion control macro						
PC88	CSDS	command: issue command	0	N/A	0	0	0	0
		/ execution result						
PC89	SPF1	PR special filter setting	0000h	N/A		0		
PC90	IDXS	Indexing coordinates total	100000	Pulse	0	0	0	0
		stroke	0000	N 1 / A				
PC91(∎)	PCIL	Special parameter write-in	0	N/A			0	
PC92	AYSZ	Iotal number of data array	800	N/A	0	0	0	0

NO	Abbrovistion	Name	Default	Unit	Control mode					
NO	Appreviation		value	Unit	Pt	Pr	S	Т		
PC93(∎)	AYID	Data arrays read / write address	0	N/A	0	0	0	0		
PC94(■)	AYD0	Data arrays read / write window 1	0	N/A	0	0	0	0		
PC95(∎)	AYD1	Data arrays read / write window 2	0	N/A	0	0	0	0		
PC96	TBS	E-Cam: curve scaling	100000 0	×10^(-6)		0				
PC07		E-Cam: overall pulse error	0	Source						
F 097	ALLIN		0	pulse		0				
PC98										
~		Reserved								
PC99										

(4) Input/output setting parameters

			Default			Cont	rol	
NO	Abbreviation	Name	value	Unit		mo	de	
			Value		Pt	Pr	S	Т
PD01(*)	DIA1	Input signal automatic ON	0000h	N/A	0	0	0	0
		option 1						
PD02(*)	DI1	Input signal option 1	0001h	N/A	0	0	0	0
PD03(*)	DI2	Input signal option 2	000Dh	N/A	0	0	0	0
PD04(*)	DI3	Input signal option 3	0003h	N/A	0	0	0	0
PD05(*)	DI4	Input signal option 4	0004h	N/A	0	0	0	0
PD06(*)	DI5	Input signal option 5	0002h	N/A	0	0	0	0
PD07(*)	DI6	Input signal option 6	000Fh	N/A	0	0	0	0
PD08(*)	DI7	Input signal option 7	0012h	N/A	0	0	0	0
PD09(*)	DI8	Input signal option 8	0011h	N/A	0	0	0	0
PD10(*)	DO1	Output signal option 1	0003h	N/A	0	0	0	0
PD11(*)	DO2	Output signal option 2	0008h	N/A	0	0	0	0
PD12(*)	DO3	Output signal option 3	0007h	N/A	0	0	0	0
PD13(*)	DO4	Output signal option 4	0005h	N/A	0	0	0	0
PD14(*)	DO5	Output signal option 5	0001h	N/A	0	0	0	0
PD15(*)	DIF	Digital input filter setting	0002h	N/A	0	0	0	0
	108	Digital input source control	0000h		0	_		0
FD10(∎)	103	option	000011	IN/A	0	0	0	0
PD17(*)	DOP1	LSP, LSN stop mode option	0000h	N/A	0	0	0	
PD18(*)	DOP2	CR signal clear setting	0000h	N/A	0	0		
PD19(*)	DOP3	Alarm code output option	0000h	N/A	0	0	0	0
		Operation option when the						
PD20(*)	DOP4	alarm reset signal is	0000h	N/A	0	0	0	0
		short-circuited						
PD21(*)	DI9	Input signal option 9	0018h	N/A	0	0	0	0
PD22(*)	DI10	Input signal option 10	0019h	N/A	0	0	0	0
PD23(*)	DI11	Input signal option11	0005h	N/A	0	0	0	0
PD24(*)	DI12	Input signal option 12	0010h	N/A	0	0	0	0
	ITOT	Communication control DI	00004					
PD25(∎)	1151	contact status	0000n	N/A	0	0	0	0
PD26(*)	DO6	Output signal option 6	0002h	N/A	0	0	0	0
PD27(*)	DOD	Definition of output signal contact	0020h	N/A	0	0	0	0

			Dofault		Control				
NO	Abbreviation	Name	Value	Unit	mode				
			value		Pt	Pr	S	Т	
PD28	MCOK	Position attained(DO: MC_OK)	0000h	Ν/Δ		0			
1 020	MCOK	option	000011			Ŭ			
PD29(*)	DID	Software DI A/B contact setting	0000h	N/A	0	0	0	0	
	800	DO contact source control	0000h						
PD30(∎)	500	switch(for turret mode)	00001	IN/A					
	отет	DO communication control	0000h						
PD31(∎)	0131	contact status (for turret mode)	000011	IN/A					
		Servo ON delay time when SON	0	m 0					
FD32()	SVDL	is ON	0	1115	0	0	0	0	
PD33	SFDO	Software DO register	0000h	N/A	0	0	0	0	
		DI Uninterruptible Power switch	0000h						
PD34	DIS1	function	00000	IN/A	0	0	0	0	

	Abbrovietien	Nome		11	Co	ontro	l mo	de
NO	Appreviation	name	Default value	Unit	Pt	Pr	S	Т
PE01	ODEF	Homing definition	00000000h	N/A		0		
PE02	ODAT	Origin definition	0	N/A		0		
PE03	PDEF1	PATH#1 definition	00000000h	N/A		0		
PE04	PDAT1	PATH#1 data	0	N/A		0		
PE05	PDEF2	PATH#2 definition	00000000h	N/A		0		
PE06	PDAT2	PATH#2 data	0	N/A		0		
PE07	PDEF3	PATH#3 definition	00000000h	N/A		0		
PE08	PDAT3	PATH#3 data	0	N/A		0		
PE09	PDEF4	PATH#4 definition	00000000h	N/A		0		
PE10	PDAT4	PATH#4 data	0	N/A		0		
PE11	PDEF5	PATH#5 definition	00000000h	N/A		0		
PE12	PDAT5	PATH#5 data	0	N/A		0		
PE13	PDEF6	PATH#6 definition	00000000h	N/A		0		
PE14	PDAT6	PATH#6 data	0	N/A		0		
PE15	PDEF7	PATH#7 definition	00000000h	N/A		0		
PE16	PDAT7	PATH#7 data	0	N/A		0		
PE17	PDEF8	PATH#8 definition	00000000h	N/A		0		
PE18	PDAT8	PATH#8 data	0	N/A		0		
PE19	PDEF9	PATH#9 definition	00000000h	N/A		0		
PE20	PDAT9	PATH#9 data	0	N/A		0		
PE21	PDEF10	PATH#10 definition	00000000h	N/A		0		
PE22	PDAT10	PATH#10 data	0	N/A		0		
PE23	PDEF11	PATH#11 definition	00000000h	N/A		0		
PE24	PDAT11	PATH#11 data	0	N/A		0		
PE25	PDEF12	PATH#12 definition	00000000h	N/A		0		
PE26	PDAT12	PATH#12 data	0	N/A		0		
PE27	PDEF13	PATH#13 definition	00000000h	N/A		0		
PE28	PDAT13	PATH#13 data	0	N/A		0		
PE29	PDEF14	PATH#14 definition	00000000h	N/A		0		
PE30	PDAT14	PATH#14 data	0	N/A		0		
PE31	PDEF15	PATH#15 definition	00000000h	N/A		0		
PE32	PDAT15	PATH#15 data	0	N/A		0		
PE33	PDEF16	PATH#16 definition	00000000h	N/A		0		
NO	Abbreviation	Name	Default value	Unit	Co	ontro	l mo	de

(5) PR position path planning parameter group 1

					Pt	Pr	S	Т
PE34	PDAT16	PATH#16 data	0	N/A		0		
PE35	PDEF17	PATH#17 definition	00000000h	N/A		0		
PE36	PDAT17	PATH#17 data	0	N/A		0		
PE37	PDEF18	PATH#18 definition	00000000h	N/A		0		
PE38	PDAT18	PATH#18 data	0	N/A		0		
PE39	PDEF19	PATH#19 definition	00000000h	N/A		0		
PE40	PDAT19	PATH#19 data	0	N/A		0		
PE41	PDEF20	PATH#20 definition	00000000h	N/A		0		
PE42	PDAT20	PATH#20 data	0	N/A		0		
PE43	PDEF21	PATH#21 definition	00000000h	N/A		0		
PE44	PDAT21	PATH#21 data	0	N/A		0		
PE45	PDEF22	PATH#22 definition	00000000h	N/A		0		
PE46	PDAT22	PATH#22 data	0	N/A		0		
PE47	PDEF23	PATH#23 definition	00000000h	N/A		0		
PE48	PDAT23	PATH#23 data	0	N/A		0		
PE49	PDEF24	PATH#24 definition	00000000h	N/A		0		
PE50	PDAT24	PATH#24 data	0	N/A		0		
PE51	PDEF25	PATH#25 definition	00000000h	N/A		0		
PE52	PDAT25	PATH#25 data	0	N/A		0		
PE53	PDEF26	PATH#26 definition	00000000h	N/A		0		
PE54	PDAT26	PATH#26 data	0	N/A		0		
PE55	PDEF27	PATH#27 definition	00000000h	N/A		0		
PE56	PDAT27	PATH#27 data	0	N/A		0		
PE57	PDEF28	PATH#28 definition	00000000h	N/A		0		
PE58	PDAT28	PATH#28 data	0	N/A		0		
PE59	PDEF29	PATH#29 definition	00000000h	N/A		0		
PE60	PDAT29	PATH#29 data	0	N/A		0		
PE61	PDEF30	PATH#30 definition	00000000h	N/A		0		
PE62	PDAT30	PATH#30 data	0	N/A		0		
PE63	PDEF31	PATH#31 definition	00000000h	N/A		0		
PE64	PDAT31	PATH#31 data	0	N/A		0		
PE65	PDEF32	PATH#32 definition	00000000h	N/A		0		
PE66	PDAT32	PATH#32 data	0	N/A		0		
PE67	PDEF33	PATH#33 definition	00000000h	N/A		0		
NO	Abbreviation	Namo	Default value	Unit	Co	ontro	mo	de
		inallic		Unit	Pt	Pr	S	Т
PE68	PDAT33	PATH#33 data	0	N/A		0		
------	--------------	--------------------	-----------------	------	----	--------	----	----
PE69	PDEF34	PATH#34 definition	00000000h	N/A		0		
PE70	PDAT34	PATH#34 data	0	N/A		0		
PE71	PDEF35	PATH#35 definition	00000000h	N/A		0		
PE72	PDAT35	PATH#35 data	0	N/A		0		
PE73	PDEF36	PATH#36 definition	00000000h	N/A		0		
PE74	PDAT36	PATH#36 data	0	N/A		0		
PE75	PDEF37	PATH#37 definition	00000000h	N/A		0		
PE76	PDAT37	PATH#37 data	0	N/A		0		
PE77	PDEF38	PATH#38 definition	00000000h	N/A		0		
PE78	PDAT38	PATH#38 data	0	N/A		0		
PE79	PDEF39	PATH#39 definition	00000000h	N/A		0		
PE80	PDAT39	PATH#39 data	0	N/A		0		
PE81	PDEF40	PATH#40 definition	00000000h	N/A		0		
PE82	PDAT40	PATH#40 data	0	N/A		0		
PE83	PDEF41	PATH#41 definition	00000000h	N/A		0		
PE84	PDAT41	PATH#41 data	0	N/A		0		
PE85	PDEF42	PATH#42 definition	00000000h	N/A		0		
PE86	PDAT42	PATH#42 data	0	N/A		0		
PE87	PDEF43	PATH#43 definition	00000000h	N/A		0		
PE88	PDAT43	PATH#43 data	0	N/A		0		
PE89	PDEF44	PATH#44 definition	00000000h	N/A		0		
PE90	PDAT44	PATH#44 data	0	N/A		0		
PE91	PDEF45	PATH#45 definition	00000000h	N/A		0		
PE92	PDAT45	PATH#45 data	0	N/A		0		
		Norma	Defectification	11	Co	ontrol	mo	de
NO	Abbreviation	Name	Default value	Unit	Pt	Pr	S	Т
PE93	PDEF46	PATH#46 definition	00000000h	N/A		0		

PE94	PDAT46	PATH#46 data	0	N/A	0	
PE95	PDEF47	PATH#47 definition	00000000h	N/A	0	
PE96	PDAT47	PATH#47 data	0	N/A	0	
PE97	PDEF48	PATH#48 definition	00000000h	N/A	0	
PE98	PDAT48	PATH#48 data	0	N/A	0	
PE99		Reserved				

(0) i position path planning parameter group z
--

NO	Abbreviation	Namo	Default	lt Unit	Control mod				
NO	Appreviation	Name	value	Unit	Pt	Pr	S	Т	
PF01	PDEF49	PATH#49 definition	00000000h	N/A		0			
PF02	PDAT49	PATH#49 data	0	N/A		0			
PF03	PDEF50	PATH#50 definition	00000000h	N/A		0			
PF04	PDAT50	PATH#50 data	0	N/A		0			
PF05	PDEF51	PATH#51 definition	00000000h	N/A		0			
PF06	PDAT51	PATH#51 data	0	N/A		0			
PF07	PDEF52	PATH#52 definition	00000000h	N/A		0			
PF08	PDAT52	PATH#52 data	0	N/A		0			
PF09	PDEF53	PATH#53 definition	00000000h	N/A		0			
PF10	PDAT53	PATH#53 data	0	N/A		0			
PF11	PDEF54	PATH#54 definition	00000000h	N/A		0			
PF12	PDAT54	PATH#54 data	0	N/A		0			
PF13	PDEF55	PATH#55 definition	00000000h	N/A		0			
PF14	PDAT55	PATH#55 data	0	N/A		0			
PF15	PDEF56	PATH#56 definition	00000000h	N/A		0			
PF16	PDAT56	PATH#56 data	0	N/A		0			
PF17	PDEF57	PATH#57 definition	00000000h	N/A		0			
PF18	PDAT57	PATH#57 data	0	N/A		0			
PE19	PDEF58	PATH#58 definition	00000000h	N/A		0			
PF20	PDAT58	PATH#58 data	0	N/A		0			
PF21	PDEF59	PATH#59 definition	00000000h	N/A		0			
PF22	PDAT59	PATH#59 data	0	N/A		0			
PF23	PDEF60	PATH#60 definition	00000000h	N/A		0			
PF24	PDAT60	PATH#60 data	0	N/A		0			
PF25	PDEF61	PATH#61 definition	00000000h	N/A		0			
PF26	PDAT61	PATH#61 data	0	N/A		0			
PF27	PDEF62	PATH#62 definition	00000000h	N/A		0			
PF28	PDAT62	PATH#62 data	0	N/A		0			
PF29	PDEF63	PATH#63 definition	00000000h	N/A		0			
PF30	PDAT63	PATH#63 data	0	N/A		0			
PF31		Reserved							
PF32		Reserved							
PF33	POV1	Speed setting of internal position command 1	50	rpm, mm/s		0			

NO	Abbreviation	Namo	Default	110:4	Control mode				
NO	Appreviation	Name	value	Unit	Pt	Pr	S	Т	
PF34	POV2	Speed setting of internal position command 2	10	rpm, mm/s		0			
PF35	POV3	Speed setting of internal position command 3	200	rpm, mm/s		0			
PF36	POV4	Speed setting of internal position command 4	300	rpm, mm/s		0			
PF37	POV5	Speed setting of internal position command 5	500	rpm, mm/s		0			
PF38	POV6	Speed setting of internal position command 6	800	rpm, mm/s		0			
PF39	POV7	Speed setting of internal position command 7	1000	rpm, mm/s		0			
PF40	POV8	Speed setting of internal position command 8	1200	rpm, mm/s		0			
PF41	POV9	Speed setting of internal position command 9	1500	rpm, mm/s		0			
PF42	POV10	Speed setting of internal position command 10	1800	rpm, mm/s		0			
PF43	POV11	Speed setting of internal position command 11	2000	rpm, mm/s		0			
PF44	POV12	Speed setting of internal position command 12	2200	rpm, mm/s		0			
PF45	POV13	Speed setting of internal position command 13	2400	rpm, mm/s		0			
PF46	POV14	Speed setting of internal position command 14	2700	rpm, mm/s		0			
PF47	POV15	Speed setting of internal position command 15	3000	rpm, mm/s		0			
PF48	POV16	Speed setting of internal position command 16	3000	rpm, mm/s		0			
PF49	POA1	Acceleration/deceleration time of internal position command 1	200	ms		0			
PF50	POA2	Acceleration/deceleration time of internal position command 2	300	ms		0			

NO	Abbroviation	ion Name	Default	Unit	Control mode				
NO	Appreviation		value	Unit	Pt	Pr	S	Т	
PF51	POA3	Acceleration/deceleration time of internal position command 3	500	ms		0			
PF52	POA4	Acceleration/deceleration time of internal position command 4	600	ms		0			
PF53	POA5	Acceleration/deceleration time of internal position command 5	800	ms		0			
PF54	POA6	Acceleration/deceleration time of internal position command 6	900	ms		0			
PF55	POA7	Acceleration/deceleration time of internal position command 7	1000	ms		0			
PF56	POA8	Acceleration/deceleration time of internal position command 8	1200	ms		0			
PF57	POA9	Acceleration/deceleration time of internal position command 9	1400	ms		0			
PF58	POA10	Acceleration/deceleration time of internal position command 10	1600	ms		0			
PF59	POA11	Acceleration/deceleration time of internal position command 11	2000	ms		0			
PF60	POA12	Acceleration/deceleration time of internal position command 12	2500	ms		0			
PF61	POA13	Acceleration/deceleration time of internal position command 13	3000	ms		0			
PF62	POA14	Acceleration/deceleration time of internal position command 14	4000	ms		0			

NO	Abbreviation	Nama	NameDefault valueUnitControl modelion/decelerationImage: Control modelImage: Control model	Unit	Control mode				
NO	Abbreviation	Name							
PF63	POA15	Acceleration/deceleration time of internal position command 15	5000	ms		0			
PF64	POA16	Acceleration/deceleration time of internal position command 16	6000	ms		0			
PF65	DLY1	Delay time 1 after position reached	0	ms		0			
PF66	DLY2	Delay time 2 after position reached	100	ms		0			
PF67	DLY3	Delay time 3 after position reached	200	ms		0			
PF68	DLY4	Delay time 4 after position reached	300	ms		0			
PF69	DLY5	Delay time 5 after position reached	500	ms		0			
PF70	DLY6	Delay time 6 after position reached	600	ms		0			
PF71	DLY7	Delay time 7 after position reached	800	ms		0			
PF72	DLY8	Delay time 8 after position reached	1000	ms		0			
PF73	DLY9	Delay time 9 after position reached	1200	ms		0			
PF74	DLY10	Delay time 10 after position reached	1500	ms		0			
PF75	DLY11	Delay time 11 after position reached	2000	ms		0			
PF76	DLY12	Delay time 12 after position reached	2300	ms		0			
PF77	DLY13	Delay time 13 after position reached	2500	ms		0			
PF78	DLY14	Delay time 14 after position reached	3000	ms		0			
PF79	DLY15	Delay time 15 after position reached	4000	ms		0			

NO	Abbraviation	Nama	Default	Unit	Control mode					
NO	Appreviation	Name	value	Unit	Pt	Pr	S	Т		
PF80	DLY16	Delay time 16 after position reached	5000	ms		0				
PF81	PDEC	Deceleration time for auto-protection	00000000h	ms	0	0	0	0		
PF82(∎)	PRCM	PR command trigger register	0	N/A		0				
PF83	EVON	PR number triggered by event rising edge	0000h	N/A		0				
PF84	EVOF	PR number triggered by event falling edge	0000h	N/A		0				
PF85(∎)	PMEM	PATH#1 to PATH#2 data vanish after power off.	0000h	N/A	0	0	0	0		
PF86	SWLP	Positive software limit	2 ³¹ -1	pulse		0				
PF87	SWLN	Negative software limit	-2 ³¹ +1	pulse		0				
PF88	BLSP	Backlashcompensationvaluesetting(beforeElectronic gear ratio)	0	pulse	0	0				
PF89	BLST	Backlash compensation time constant setting	0	0.1m s	0	0				
PF90	BLSF	Backlash compensation option	0	N/A	0	0				
PF91~ PF99										

(7) Motor related parameters

NO	Abbroviation	Nama	Default	110:4	Motor	r type
NO	Appreviation	Name	value	Unit	SPM	LM
PL01		Motor type	0	N/A	0	0
		Motor parameter automatic				
PL02		identification function and	0	N/A	0	0
		current response setting.				
		Linear motor parameter	0	N1/A	0	0
PL03		confirmation	0	N/A	0	0
PL04		Encoder type	0x0100	N/A	0	0
		Encodor resolution	2500	Pulse/rev	0	0
FL05			2500	10 ⁻³ um/pulse	0	0
PL06		Reserved				
		Motor UVW and Hall sensor	0×00	NI/A	0	0
		phase sequences	0,00		0	0
		Hall sensor offset angle	0	0.1° (Electrical	0	0
			0	angle)		0
		Hall sensor hysteresis width	0	0.1° (Electrical	0	0
1 203			0	angle)	0	0
PI 10		Electrical angle correction	0x00	N/A	0	0
1 210		function	0,000		Ū	0
PI 11		Z phase signal offset angle	0	0.1° (Electrical	0	0
			Ŭ	angle)		
PL12		Current setting for initial	100	%	0	0
		magnetic field detection				
PL13		Initial magnetic field	0x64	N/A	0	0
		detection condition				
PL14		Reserved				
PL15		Reserved				
PL16		Current loop proportional	0	N/A	0	0
		gain (kp)	_	-		
PL17		Current loop integral gain	0	N/A	0	0
		(ki)				
PL18		Current loop gain	0	%	0	0
		magnification				
PL19		Reserved				
PL20		Overload increase gain	100	%	0	0

NO Abbreviation		Namo	Default	11	Moto	^r type
NO	Appreviation	Name	value	Unit	SPM	LM
PL21		Overload decrease gain	100	%	0	0
PL22		Cogging compensation option	0x1A00	N/A	0	0
PL23		Motor temperature sensor	0	N/A	0	0
PL24		Motor over temperature mode option	0	N/A	0	0
PL25		Motor over temperature trigger level	150	Ohm	0	0
PL26		Motor over temperature release level	100	Ohm	0	0
PL27		Motor over temperature timeout setting	30	sec	0	0
PL28		Permanent-magnet rotary motor pole number	10	pole	0	
PL29		Permanent-magnet rotary motor rated current	30	0.01A	0	
PL30		Permanent-magnet rotary motor maximum current	100	0.01A	0	
PL31		Permanent-magnet rotary motor rated speed	3000	rpm	0	
PL32		Permanent-magnet rotary motor maximum speed	5000	rpm	0	
PL33		Permanent-magnet rotary motor torque constant	0	0.001Nm/A	0	
PL34		Permanent-magnet rotary motor rotor inertia	0	10 ⁻⁷ kg.m ²	0	
PL35		Permanent-magnet rotary motor phase resistance	0	0.001 ohm	0	
PL36		Permanent-magnet rotary motor phase inductance	0	0.01 mh	0	
PL37		Permanent-magnet rotary motor back electromotive force constant	0	10 ⁻⁴ Volt/rpm	0	
PL38		Pulse loss detection function	0	N/A	0	0
PL39		Pulse loss detection Threshold	400	pulse	0	0

NO	Abbrovietien	Nome	Default		Motor	type	
NO	Appreviation	Name	value	Unit	SPM	LM	
PL40		Pulse loss detection Z phase interval	2000	pulse	0	0	
PL41		Reserved					
PL42		Linear motor pole pitch	0	0.1 mm / 360° Electrical angle		0	
PL43		Linear motor rated current	30	0.01A		0	
PL44		Linear motor maximum current	100	0.01A		0	
PL45		Linear motor maximum speed	5000	mm/s		0	
PL46		Linear motor force constant	0	0.01N/A		0	
PL47		Linear motor phase resistance	0	0.001 ohm		0	
PL48		Linear motor phase inductance	0	0.01 mh		0	
PL49		Linear motor back electromotive force constant	0	0.1 Volt/(m/s)		0	
PL50		Linear compensation option	0	N/A	0	0	
PL51		Temperature sensor resistance (Read-only)	0	ohm	0	0	

To facilitate the user to operate the Shihlin servo with relevant parameters and set appropriate parameters in different modes, below listed the parameters by its categories.

	Т	orque control relevant parame	ters					
Parameter	Abbreviation	Parameter function	Default	Unit	C	Cont	trol	
NO#	Abbieviation	r arameter runction	value		Pt	Pr	S	Т
PA01(*)	STY	Control mode setting	1000h	N/A	0	0	0	0
PA05	TL1	Internal torque limit 1	100	%	0	0	0	0
PC05	SC1	Internal speed limit 1	100	rpm			0	0
PC06	SC2	Internal speed limit 2	500	rpm			0	0
PC07	SC3	Internal speed limit 3	1000	rpm			0	0
PC08	SC4	Internal speed limit 4	200	rpm			0	0
PC09	SC5	Internal speed limit 5	300	rpm			0	0
PC10	SC6	Internal speed limit 6	500	rpm			0	0
PC11	SC7	Internal speed limit 7	800	rpm			0	0
PC12 (▲)	VCM	Max. rotation speed of analog speed limit	3000	rpm			0	0
PC13 (▲)	TLC	Max. output of analog torque command	100	%	0	0	0	0
PC25	TL2	Internal torque limit 2	100	%	0	0	0	0
PC26	VCO	Analog speed command offset	0	mV			0	0
PC27	TLO	Analog torque limit offset	0	mV			0	0
PC35(*)	VCL	VC voltage limit	0	mV			0	0
PC75	TQ1	Internal torque command 1	100	%				0
PC76	TQ2	Internal torque command 2	100	%				0
PC77	TQ3	Internal torque command 3	100	%				0
PA47	TLP	Positive torque limit value	5000	0.1%	0	0	0	0
PA48	TLN	Negative torque limit value	5000	0.1%	0	0	0	0

Speed control relevant parameters										
Parameter NO#	Abbreviation	Parameter function	Default value	Unit	C Pt	ont mod	de	і т		
PA01(*)	STY	Control mode setting	1000h	N/A	0	0	0	0		
PA05	TL1	Internal torque limit 1	100	%	0	0	0	0		
PA14(*)	ENR	Encoder output pulse number	10000	pulse/rev	0	0	0	0		
PB18	SFLT	Speed command low-pass filter smooth time constant	0	ms			0	0		
PC05	SC1	Internal speed command 1	100	rpm			0	0		
PC06	SC2	Internal speed command 2	500 rpm				0	0		
PC07	SC3	Internal speed command 3	1000	rpm			0	0		
PC08	SC4	Internal speed command 4	200	rpm			0	0		
PC09	SC5	Internal speed command 5	300	rpm			0	0		
PC10	SC6	Internal speed command 6	500	rpm			0	0		
PC11	SC7	Internal speed command 7	800	rpm			0	0		
PC12 (▲)	VCM	Maximum motor speed for analog Speed command	3000	rpm			0	0		
PC25	TL2	Internal torque limit 2	100	%	0	0	0	0		
PC26	VCO	Analog speed command offset	0	mV			0	0		
PC27	TLO	Analog torque limit offset	0	mV			0	0		
PC35(*)	VCL	VC voltage limit	0	mV			0	0		
PA47	TLP	Positive torque limit	5000	0.1%	0	0	0	0		
PA48	TLN	Negative torque limit	5000	0.1%	0	0	0	0		

Parameter	Abbreviation	Parameter function	Default	Unit	C	iont mo	ro de	I
NO#			value		Pt	Pr	S	Т
PA01(*)	STY	Control mode setting	1000h	N/A	0	0	0	0
PA04	HMOV	Homing mode	0000h	N/A		0		
PA05	TL1	Internal torque limit 1	100	%	0	0	0	0
PA06	СМХ	Electronic gear numerator	1	N/A	0	0		
PA07 (▲)	CDV	Electronic gear denominator	1	N/A	0	0		
PA13 (*)	PLSS	Command pulse option	0000h	N/A	0			
PA14 (*)	ENR	Encoder output pulse number	10000	Pulse/rev	0	0	0	0
PA39(*)	POL	Motor rotation direction option	0000h	N/A	0	0	0	0
PC25	TL2	Internal torque limit 2	100	%	0	0	0	0
PC32	CMX2	Electronic gear numerator 2	1	N/A	0			
PC33	CMX3	Electronic gear numerator 3	1	N/A	0			
PC34	CMX4	Electronic gear numerator 4	1	N/A	0			
PE01	ODEF	Homing definition	00000000h	N/A		0		
PE02	ODAT	Origin definition	0	N/A		0		
PE03 ~ PE98		Refer to section 8.3 for PR related definition			0	0		
PF01 ~ PF87		Refer to section 8.3 for PR related definition			0	0		
PA47	TLP	Positive torque limit	5000	0.1%	0	0	0	0
PA48	TLN	Negative torque limit	5000	0.1%	0	0	0	0
PF89(*)	BLSF	Backlash compensation option	0	N/A	0	0		
PF90	BLSP	Backlash compensation value setting (before E-Gear ratio)	0	pulse	0	0		
PF91	BLST	Backlash compensation time constant setting	0	0.1ms	0	0		

F	Filter smoothing and resonance suppression relevant parameters											
Parameter			Default		С	on	tro					
NO#	Abbreviation	Parameter function	value	Unit		mo	de					
					Pt	Pr	S	Т				
PB01	NHF1	Frequency of machine resonance suppression filter 1	1000	Hz	0	0	0	0				
PB02	NHD1	Attenuation rate of machine resonance suppression filter 1	0 dB		0	0	0	0				
PB03	NLP	Resonance suppression low-pass filter	10	0.1ms	0	0	0	0				
PB04	PST	Position command filter time constant	3	ms	0	0						
PB19	TQC	Torque command filter time constant	0	ms				0				
PB20	SJIT	Speed feedback filter time constant	0	0.1ms	0	0	0	0				
PB21	NHF2	Frequency of machine resonance suppression filter 2	1000	Hz	0	0	0	0				
PB22	NHD2	Attenuation of machine resonance suppression filter 2	0 dB		0	0	0	0				
PB23(▲)	IGE	Current gain enhancement function	0	N/A	0	0	0	0				
PB25	NHF3	Frequency of machine resonance	1000	Hz	0	0	0	0				
PB26	NHD3	Attenuation of machine resonance suppression filter 3	0	dB	0	0	0	0				
PB27	ANCF	Auto resonance suppression mode setting	1	N/A	0	0	0	0				
PB28	ANCL	Auto resonance suppression detection level	50	%	0	0	0	0				
PB29	AVSM	Auto low frequency vibration suppression mode setting	0	N/A	0	0						
PB30	VCL	Low-frequency vibration detection level setting	50	50 pulse		0						
PB31	VSF1	Low-frequency vibration suppression frequency setting 1	100	0.1Hz	0	0						
PB32	VSG1	Low-frequency vibration suppression gain 1	0	N/A		0						
PB33	VSF2	Low-frequency vibration suppression frequency setting 2	100	0.1Hz	0	0						

PB34	PB34 VSG2 Low-frequency vibration		0	N/A	0	0		
		suppression gain 2						
PB35	FRCL	Friction compensation level	0	%	0	0	0	
PB36	FRCT	Friction compensation smoothing	0	ms	0	0	0	
		time constant						
PB37	FRCM	Friction compensation mode option	0	N/A	0	0	0	
PB38	FFCT	Position feed forward filter time	0	ms	0	0		
		constant						ĺ
PC01	STA	Acceleration time constant	200	ms		0	0	0
PC02	STB	Deceleration time constant	200	ms		0	0	0
PC03	OTO	S-curve acceleration/deceleration	0			0	0	
	510	time constant	0	ms				0
PD17(*)	DOP1	LSP, LSN stop mode option	0000h	N/A	0	0	0	
PB45	NHF4	Frequency of machine resonance	1000	Hz	0	0	0	0
		suppression filter 4						ĺ
PB46	NHD4	Attenuation of machine resonance	0	dB	0	0	0	0
		suppression filter 4						ĺ
PB47	NHF5	Frequency of machine resonance	1000	Hz	0	0	0	0
		suppression filter 5						ĺ
PB48	NHD5	Attenuation of machine resonance	0	dB	0	0	0	0
		suppression filter 5						ĺ
PB50	MVF	Position command average filter	0	ms	0	0		
		time constant						
PC39	LPS	Low-pass filter setting option	0000h	N/A	0	0	0	0

Gain and switching relevant parameters										
Doromotor			Default		C	on	tro			
NO#	Abbreviation	Parameter function	value	Unit		mo	de	1		
			Taldo		Pt	Pr	S	Т		
PA02	ATUM	AUTO tuning mode setting	0002h	N/A	0	0	0	0		
PA03	ATUL	Auto-tuning response level setting	0010	N/A	0	0	0	0		
PB05	FFC	Position feed-forward gain	0	0.0001	0	0				
PB07	PG1	Position loop gain	45	rad/s	0	0				
PB08	VG1	Speed loop gain	183	rad/s	0	0	0			
PB09	VIC	Speed integral gain	34	ms	0	0	0			
PB10	VFG	Speed feed-forward gain	0	0.0001			0			
PB11(*)	CDP	Gain switch option	0000h	N/A	0	0	0			
				Kpps /	0	0	0			
PB12	CDS	Gain switch condition	10	Pulse /						
				rpm						
PB13	CDT	Gain switch time constant	1 ms		0	0	0			
PB14	GD2	Servo motor load inertia ratio 2	70	0.1times	0	0	0			
PB15	PG2	Position loop gain change ratio	100	%	0	0				
PB16	VG2	Speed loop gain change ratio	100	%	0	0	0			
PB17	VIC2	Speed integral gain change ratio	100	%	0	0	0			
PB24	VDC	Speed differential compensation	980	N/A	0	0	0			
PB44	PPD	Position loop compensation gain	0	rad/s	0	0				
PB49	DOB	External interference compensation gain	0	N/A	0	0	0	0		
PB51	RND	Factory test only	0000h	N/A	0	0	0	0		
PB52	TH0	Factory test only	0	N/A	0	0	0	0		
PB53	TH1	Factory test only	0	N/A	0	0	0	0		
PB55	Prd	Factory test only	1	sec	0	0	0	0		
PB56	RnDF	Factory test only	5	ms	0	0	0	0		

DI/DO relevant parameters									
Parameter	Abbroviction	Peromotor function	Default	L loit		Mo	de		
NO#	Appreviation	Parameter function	Delauit	Unit	Pt	Pr	S	Т	
PA12	INP	In-position range	41943	pulse	0	0			
PC17	ZSP	Zero speed range	50	rpm	0	0	0	0	
	MPD	Electromagnetic brake sequence	100		0	0	0	0	
FCTO		output time	100	1115					
PD01(*)	DIA1	Input signal automatic ON option 1	0000h	N/A	0	0	0	0	
PD02(*)	DI1	Input signal option 1(pin CN1-14)	0001h	N/A	0	0	0	0	
PD03(*)	DI2	Input signal option 2(pin CN1-15)	000Dh	N/A	0	0	0	0	
PD04(*)	DI3	Input signal option 3(pin CN1-16)	0003h	N/A	0	0	0	0	
PD05(*)	DI4	Input signal option 4(pin CN1-17)	0004h	N/A	0	0	0	0	
PD06(*)	DI5	Input signal option 5(pin CN1-18)	0002h	N/A	0	0	0	0	
PD07(*)	DI6	Input signal option 6(pin CN1-19)	000Fh	N/A	0	0	0	0	
PD08(*)	DI7	Input signal option 7(pin CN1-20)	0012h	N/A	0	0	0	0	
PD09(*)	DI8	Input signal option 8(pin CN1-21)	0011h	N/A	0	0	0	0	
PD10(*)	DO1	Output signal option 1(pin CN1-41)	0003h	N/A	0	0	0	0	
PD11(*)	DO2	Output signal option 2(pin CN1-42)	0008h	N/A	0	0	0	0	
PD12(*)	DO3	Output signal option 3(pin CN1-43)	0007h	N/A	0	0	0	0	
PD13(*)	DO4	Output signal option 4(pin CN1-44)	0005h	N/A	0	0	0	0	
PD14(*)	DO5	Output signal option 5(pin CN1-45)	0001h	N/A	0	0	0	0	
PD15(*)	DIF	Digital input filter setting	0002h	N/A	0	0	0	0	
PD16(*)	IOS	Digital input source control option	0000h	N/A	0	0			
PD17(*)	DOP1	LSP, LSN stop mode option	0000h	N/A	0	0	0		
PD18(*)	DOP2	CR signal clear setting	0000h	N/A	0	0			
PD19(*)	DOP3	Alarm code output option	0000h	N/A	0	0	0	0	
PD20(*)	DOP4	Operation option when the alarm	0000h		0	0	0	0	
		reset signal is short-circuited		IN/A					
PD21(*)	DI9	Input signal option 9	0018h	N/A	0	0	0	0	
PD22(*)	DI10	Input signal option 10	0019h	N/A	0	0	0	0	
PD23(*)	DI11	Input signal option 11	0005h	N/A	0	0	0	0	
PD24(*)	DI12	Input signal option 12	0010h	N/A	0	0	0	0	
PD25(∎)	ITST	Communication control DI status	0000h	N/A	0	0	0	0	
PD26(*)	DO6	Output signal option 6	0002h	N/A	0	0	0	0	
PD27(*)	DOD	Definition of output signal contact	0020h	N/A	0	0	0	0	
PD29	DID	Software DI A/B contact setting	0000h	N/A	0	0	0	0	
PD33	SFDO	Software DO register	0000h	N/A	0	0	0	0	

	Communication relevant parameters										
Parameter	Abbreviation	Parameter function	Default	Unit	C	Cont mod	tro de	I			
NO#			value		Pt	Pr	S	Т			
PC20(*)	SNO	Servo drive communication device number	1	N/A	0	0	0	0			
PC21(*)	CMS	Communication mode option	0	N/A	0	0	0	0			
PC22(*)	BPS	Communication protocol option	0010h	N/A	0	0	0	0			
PC23	SIC	Serial communication timeout option	0	s	0	0	0	0			
PA23(∎)	MCS	Memory write-inhibit function	0	N/A	0	0	0	0			
PC41 ~ PC60		Communication mapping relevant parameters									

Monitor and status display relevant parameters											
Parameter	Abbreviation	Parameter function		Unit	C	Cont mod	rol de				
NO#			value		Pt	Pr	S	Т			
PC14	MOD	Analog output monitor	0100h	0100h N/A			0	0			
PC24(*)	DMD	Drive status display option 0000h N/A					0	0			
PC28	MO1	Analog monitor MON1 voltage offset	mV	0	0	0	0				
PC29	MO2	Analog monitor MON2 voltage offset	0	mV	0	0	0	0			
PC30	MOG1	Analog monitor MON1 output proportion	100	%	0	0	0	0			
PC31	MOG2	Analog monitor MON2 output proportion	100	%	0	0	0	0			

Other parameters									
Parameter	Abbreviation	Parameter function	Default	Unit	C	ont mod	tro de		
NO#			value		Pt	Pr	S	Т	
PA40(▲)	SPW	Special parameter write-in function	0000h	N/A	0	0	0	0	
PA42(*)	BLK	Parameter group write-inhibit setting	0000h	N/A	0	0	0	0	
PB06	GD1	Servo motor load inertia ratio	70	0.1times	0	0	0		
PB14	GD2	Servo motor load inertia ratio 2	70	0.1times	0	0	0		
PC18(*)	COP1	Stop option and power interruption / restart option	0010h	N/A	0	0	0	0	
PC19(*)	COP2	Alarm record clear option	0000h	N/A	0	0	0	0	
PD20(*)	DOP4	Operation option when the alarm reset signal is short-circuited	0000h	N/A	0	0	0	0	

8.3. Parameter group introduction

No	Abbr.	Param	neter fund	ction and description	Mode	Default	Range	Unit							
PA01	STY	Control mo	de setting	y value											
	(*)	u z y	/ X												
		yx: to set o	control m	lode											
		Pulse posit	ion mode	: PT											
		Inner positi	on mode:	PR											
		Speed mod	de: S To	rque mode: T											
		у	х	Control mode											
			0	PT											
			1	PT-S											
		0	2	S											
			3	S-T											
			4	Т											
			5	P-T											
			0	PR											
			1	PR-S											
		1	2	S			0000h								
			3	S-T	All	1000h	~	N/A							
			4	Т			1135h								
			5	PR-T											
			0	PT-PR											
			1	PT-PR-S											
			2	S											
		3	3	S-T											
			4	Т											
			5	PT-PR-T											
		z: electron	magnetic	brake function enabled											
		option													
		This function	on is digit	al output function, you can											
		set it by s	it by setting PD10~PD14. It's only valid												
		when using	g a servo	motor with electromagnetic											
	brake.														
		z=0: disable	ed electro												
		z=1: enable	e electrom	nagnetic brake function											

No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
		u: DI,DO setting value control u=0: the value of DI, DO(PD02 ~ PD14, PD21~PD24, PD26) are fixed during mode switching, DI, DO can be planned by user at this time. u=1: the value of DI, DO(PD02 ~ PD14, PD21~PD24, PD26) are varied with different control modes during mode switching, DI, DO				
PA02	ATUM (▲)	cannot be planned at this time. Auto tuning mode setting: 0 0 x <u>x: auto gain tuning mode setting options</u> x=0~1: manual gain tuning mode(PI control) x=2: auto-gain tuning mode 1(adjust load inertia ratio and bandwidth continuously) x=3: auto-gain tuning mode 2(fixed load inertia ratio, bandwidth is adjustable) x=4: interpolation mode (fixed position loop gain(PB07), and auto-adjust the remaining gain value) x=5: interpolation mode 2(fixed PB06 and PB07, and auto adjust the remaining gain value)	Pr, P, S	0002h	0000h ~ 0005h	N/A

No	Abbr.	Param	eter functio	n and descript	ion	Mode	Default	Ran	nge	Unit		
PA03	ATUL	Auto tuning	g response le	evel setting		Pr, Pt, S	Pr, Pt, 10 1 S		32	N/A		
		Auto tuning	g mode respo	onse setting								
		Respon se setting	Response	Speed loop response frequency (Hz)	R	Respon se Response setting		se	Spe res fre	eed loop sponse quency (Hz)		
		1	Low	10.0		17				67.1		
		2	response	11.3		18				75.6		
		3	-	12.7		19	Middle	lle		85.2		
		4		14.3		20	respons	se		95.9		
		5		16.1		21	↑		-	0.80		
		6		18.1		22			-	121.7		
		7		20.4		23				137.1		
		8		23.0		24			-	154.4		
		9		25.9		25				173.9		
		10		29.2		26				195.9		
		11		32.9		27			2	220.6		
		12		37.0		28			2	248.5		
		13	*	41.7		29	Ļ	2		279.9		
		14	Middle	47.0		30			3	315.3		
		15	response	52.9		31	High		3	355.1		
		16		59.6 32 response		se	, 400.0					

No	Abbr.	Parar	neter function a	Mode	Default	Range	Unit	
PA04	HMOV	Homing mo	de:					
		0 z y >	ĸ					
		x	у	Z				
		Limit setting	signal setting	Homing methods				
		0~1	0~2	0~8				
		Vhen reaching the limits: x=0: show error, x=1: reverse direction	y = 0: return to Z pulse y=1: do not return to Z pulse (go forward to next Z pulse) y = 2: do not look for Z pulse y = 0: return to Z y = 1: do not return to Z pulse (go forward to next Z pulse) y = 2: do not look for Z pulse y = 0: return to last Z pulse y = 2: do not look for Z pulse	 0~8 z=0: homing in forward direction and define LSP as homing origin z=1: homing in reverse direction and define LSN as homing origin z=2: homing in forward direction. ORGP: OFF→ON as homing origin z=3: homing in reverse direction ORGP: OFF→ON as homing origin z=4: look for Z pulse in forward direction and define it as homing origin z=5: look for Z pulse in reverse direction and define it as homing origin z=5: look for Z pulse in reverse direction and define it as homing origin z=6: homing in forward direction and define it as homing origin z=6: homing in reverse direction, ORGP: ON→OFF as homing origin z=7: homing in reverse direction, ORGP: ON→OFF as homing origin z=8: define current position as the origin z=9: defined as homing origin if forward direction meets motor torque. z=A: defined as homing origin if reverse direction meets motor torque. 	Pr	0000h	0000h ~ 0128h	N/A

No	Abbr.	Param	eter function and description	Mode	Default	Range	Unit
PA05	TL1	Internal torque	e limit value 1:				
		The paramete	er can limit the torque generated by the				
		servo motor. ⁻	The unit of parameter setting value is in				
		percentage (%	6). The calculation is as follows:				
		<u>Torque limit</u>	value=maximum current of motor/				
		motor rated c	urrent * the setting value				
		TL Input signa	als is used to select analog torque limit				
		or internal pa	arameter torque limit, and TL1 input				
		signal is use	d to select internal parameter torque				
		limit1 or interr	nal parameter torque limit 2.				
		if external inp	out signal TL-SG is open-circuited, the				
		<u>option of torq</u>	ue limit is as follows:			0	
						0	
		TL and	Torque limit	All	100	~	%
		SG				100	
		Open-	Torque limit=PA05				
		circuited					
		Short-	If TLA <pa05, limit="TLA</td" torque=""><td></td><td></td><td></td><td></td></pa05,>				
		circuited	If TLA>PA05, torque limit=PA05.				
		if external in	out signal TL1-SG is short-circuited ,				
		the option of t	orque limit is as follows:				
		TL1 and	Torque limit				
		SG					
		Open-	If PC25 <pa05, limit="PC25</td" torque=""><td></td><td></td><td></td><td></td></pa05,>				
		circuited	If PC25>PA05, torque limit=PA05.				
		Short-	If PC25 <tla, limit="PC25</td" torque=""><td></td><td></td><td></td><td></td></tla,>				
		circuited	If PC25>TLA, torque limit=TLA.				
PA06	CMX	Electronic gea	ar numerator			1	
		Note: when s	ervo is ON in PR mode, this parameter	Pr,Pt	1	~	N/A
		cannot be se	i.			2 ²⁶	

No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PA07	CDV (▲)	Electronic gear denominator When setting E-Gear ratio, the incorrect setting may cause servo motor suddenly unintended acceleration. Ensure to do the setting when SERVO is OFF.	Pr,Pt	1	1 ~ 2 ²⁶	N/A
PA08	HSPD1	Homing high speed option 1 HSP1 Z pulse	Pr	100	1 ~ 2000	Rpm mm/s
PA09	HSPD2	Homing high speed option 2	Pr	20	1 ~ 500	Rpm mm/s
PA10	RES1 (*)	Regenerative resistor valueModelDefault valuebelow 500W100Ω750W~1KW40Ω1.5KW~3KW13Ω	All	Refer to the left table.	10 ~ 750	Ohm

PA11	RES2	Reg	generated resistor capacity		_				
	(*)		Model	Default					
			below 500W	20W			Refer to	0	
			750W~1KW	40W		All	the left	~	Watt
			1.5KW~3KW	100W			table.	3000	
		Ref	er to section 14.2 for exterr	nal resistor capa	city.				
PA12	INP	In-po	osition range:						
		In th	ne position control mode,	when the devia	ation				
		betw	veen the position comma	and and the ad	ctual				
		moto	or position is less than the	setting value of	INP,		Refer to	0	
		the I	NP signal of DO will output	:. 	I	Pt,Pr	the left	~	pulse
			Model	Default			table.	2 ²⁴	
				value					
			50W~750W	167772					
			1KW~3KW	83886					
PA13	PLSS	Pulse	e command option						
	(*)	Sele	ct the type of external input	t pulse train.					
		l	ı z y x	_					
		u: e>	cternal pulse input source	e selection					
		u=0:	low speed photocoupler (C	N1 pin, PP, PG,	NP,				
		NG)	high an and differential (C						
		u=1:	nign speed differential (C	JNTPIN, HPP, H	PG,				
			, DND) nut nulso train format sol	loction				0000h	
		x . III	forward/reverse rotation pu	lection Ise train		Pt	0000h	~	N/A
		x_1.	nulse train+sign					1512h	
		x=1:	AB phase pulse train.						
		v: in	put pulse train logic sele	ction					
		y=0:	positive logic,						
		y=1:	negative logic						

			- nute	a logic and form	Francisco					
					Forward	Reverse				
			0	A/B phase pulse train						
			Negative logi	Pulse train + sign	PP	H				
				Forward/reverse rotation pulse train	PP					
				A/B phase pulse train						
			Positive logic	Pulse train + sign	PP _FLF_FLF_					
				Forward/reverse rotation pulse train	^{PP}					
		z:	the	setting	of input pulse f	ilter.				
		z=	0: r	naximum	input pulse freq	uency is 500kpps.				
		z=	1: r	naximum	input pulse freq	uency is 200kpps.				
		z=	2: r	naximum	input pulse freq	uency is 2Mpps.				
		Z=	3: r	naximum	input pulse freq	uency is 4Mpps.				
		z=	4: 1	maximum	n input AB phas	e pulse frequency	is			
		8N	/IPF	PS.						
		z= 16	5: 1 MP	maximum PS.	n input AB phas	e pulse frequency	is			
PA14	ENR	En	COC	der outpu	t pulse number					
	(*)	1.	Set	the enco	oder output pulse	e number (A phase,	В			
			pha	se). The	e output pulses	s number is varie	ed			
		;	acc	ording t	o PA39 enco	der output puls	se			
			set	ting.						
		2.	Set	the value	e 4 times greate	r than the A phase	or			Pulse/
			Вр	hase pul	ses. In fact, the	number of A phas	se			rev
		6	and	B phase	pulses actual or	utput is 1/4 times.		40000	4	
		3.	Ihe	e maximu	im output freque	ency is 20MHZ (after	er All	10000	~	Pulse/
			mu	Itiplicatio	on by 4), the	e operation outp	ut		2-1	mm
				luency sr	iould not exceed					
		⊏X If	aiii DA 1	pie i. pui 20 io oot t		1 + 1024				
				motor		n - 15 Set to 1024, lf	ie			
		10)24	(pulse/rev	/).		13			
		E۶	kam	ple2: out	put division ratio	setting (PA39:				

		z=1),				
		Number of pulses per revolutionOutput pulses = $\frac{PA14 \text{ setting value}}{PA14 \text{ setting value}}$ If PA39 is set to 0100h and PA14 is set to 512, the output pulse number per revolution is $2^{22}/512=$ 8192(pulse/rev)				
PA15	CRSHA	Motor crash protect level(torque percentage) To set protection level(for the rated torque percentage, 0=turn off , 1 or above =enable PA15.)	All	0	0 ~ 300	%
PA16	CRSHT	Motor crash protect level (protection time) To set protection time. When the setting level is reached and the setting protection time has taken, the AL.20 will occur. Note: PA15, PA16 function is only applicable for non-contact applications, such as electrical discharge machines.	All	1	0 ~ 1000	ms
PA17	OVL	Output overload DO warning level When the setting value is 0 - 100 and the servo motor continuously output exceeds this level, the warning signal is activated. PS: if the setting value is over 100, this function is disabled.	All	120	0 ~ 120	%
PA18	OVS	Over speed warning level If the feedback speed exceeds this value, AL.06 will occur.	All	6300	1 ~ 6500	rpm
PA19	OVPE	Position deviation excess output level	Pr,Pt	3*2 ²²	1	pulse

		when the position deviation exceeds this value,				
		AL.08 will occur.			2 ³¹ -1	
PA20	OVPL1	Position pulse frequency excess level 1			100	
	(*)	When input position pulse frequency exceeds this	Pt	4500	~	KHz
		value, AL.07 will occur.			18000	
PA21		Reserved				
PA22	DBF	Dynamic brake control function				
	(*)	(The operation setting of dynamic brake when alarm occurs.)				
		0: enable the dynamic brake and motor stops immediately.	All	0	0~1	N/A
		1: disable the dynamic brake and motor coasts to stop gradually.				
PA23	MCS	Memory write-inhibit function				
	(∎)	PA23 = 0 (all parameters can be written to EEPROM, including PA23)				
		PA23 = 1 (all parameters will not be written to EEPROM, note: this parameter will be automatically set to 0 after power off and restart)				
		PA23 = 2 (All parameters will not be written to EEPROM, but PA23 can be written to EEPROM. Note: After power off and restart, the parameter remains at 2)	All	0	0~1	N/A
		Cautions:				
		When using communication control to write				
		parameters, please set PA23=2 to prevent the EEPROM life from being reduced due to continuous writing of communication.				
PA24	PRES	Resolution of linear scale for full-closed loop control			200	
	(*)	The A/B phase number(after multiplication by 4) in full-closed loop per revolution.	Pt, Pr	5000	~ 2 ²⁴	pulse

PA25	PERR	Protection range for feedback position error between motor encoder and linear scale When the deviation is too big between the A/B counter of full-closed loop feedback and encoder position feedback, it means the connector may loosen or other mechanical problem occurs.	Pt, Pr	30000	1 ~ (2 ³¹ -1)	pulse
PA26	FCON (▲)	Linear scale for full-closed loop control switch 0 z y x x: full-closed loop function switch x=0: disable full-closed loop function x=1: enable full-closed loop function x=2: enable synchronous control function y: pulse output source option(LA/ LB/ LZ) y=0: motor encoder (CN2) y=1: full-closed loop encoder.(CN2L) y=2: reverse of full-closed loop encoder. (CN2L) y=3: input pulse (CN1). z: full-closed loop encoder feedback forward / reverse phase option z=0: A phase leads B phase in the positive direction. z=1: B phase leads A phase in the positive direction.	Pt, Pr	0000h	0000h ~ 0112h	N/A
PA27	FELP	Low-pass filter time constant for full-closed and semi-closed loop control When the stiffness of the mechanical system between full-closed and semi-closed loop is insufficient, set the proper time constant can enhance the stability of the system. In other words, temporarily create the semi-closed loop effect, and after stabilizing, the full-closed loop effect is created. When the stiffness is sufficient, set the value to 0 to disable the function.	Pt, Pr	100	0 ~ 1000	ms

PA28	ABS	Absolute encoder setting.				
	(*)	 0: incremental operation, and the absolute motor can be operated as an incremental motor. 1: absolute operation(only applicable to absolute motors, if applied to incremental motors, AL.24 will occur) 	All	0000h	0000h ~ 0001h	N/A
PA29	CAP (∎)	Absolute position reset Set PA29 to 1 to reset the current absolute position of the encoder. This function is the same as the DI:ABSC to clear the coordinate.	All	0000h	0000h ~ 0001h	N/A
PA30	UAP (∎)	Update encoder absolute position When PA30=1, update the data to PA31~PA33, and the pulse deviation is not cleared. When PA30=2, update the data to PA31~PA33 and clear the pulse deviation, When this command is activated, the current position of motor is set as the end of position command.	All	0	0 ~ 2	N/A
PA31	APST	Absolute coordinate system status (Read-only) Bit0: 1 means the absolute position is lost, 0 means normal. Bit1: 1 means low battery voltage, 0 means normal. Bit2: 1 means the absolute revolution number overflows, 0 means normal Bit3: reserved (0) Bit4: 1 means the absolute coordinate has not been set. 0 means normal. Bit5 ~ Bit15: reserved (0)	All	0	0000h ~ 001Fh	N/A

PA32	APR	Encoder absolute position (pulse number) (read-only) The parameter displays the position feedback pulse number of the absolute position system, and it is valid in absolute system(PA28=1).	All	0	Pulse number per revoluti on	pulse
PA33	APP	Encoder absolute position (number of revolution) (read-only) The parameter displays the position feedback revolution number of absolute position system, and it is valid in absolute system(PA28=1)	All	0	32767 ~ -32768	rev
PA34	ABSM (*)	I/O communication mode of absolute system When PA34=0, it indicates Delta absolute IO communication function is applied. When PA34=1, it indicates Mitsubishi absolute IO communication function is applied.	All	0	0 ~ 1	N/A
No	Abbr.	Parameter function and description	Mode	Default	Range	Unit

PA35	FNO1	Function option 1				
	(*)	u z y x				
		x: set torque and motor output direction				
		In absolute system, when x of PA35 is changed,				
		homing must be performed after power cycling.				
		Image: constraint of the sector of the sec				
		y: speed control direction definition				
		y=0: the motor runs forwardly when ST1 is ON. The motor runs reversely when ST2 is ON.			0000h	
		y=1: the motor runs forwardly when ST1 is OFF.	ΔIJ	00006	000011	ΝΙ/Δ
		When ST1 is ON, the motor runs reversely, ST2 is invalid, and the SERVO LOCK function is disabled.		000011	~ 1121h	IN/A
		y=2: the motor runs reversely when ST1 is OFF. When ST1 is ON, the motor runs forwardly, ST2 is invalid, and the SERVO LOCK function is disabled.				
		z: option of servo lock when speed control is stopped				
		z=0: servo lock is valid and the stop position is held.				
		z=1: servo lock is invalid, the stop position is mobile. The drive will control the rotation speed to 0 rpm.				
		u: condition of mode switching				
		u=0: the ZSP signal will be referred when the mode is switched				
		u=1: the ZSP signal will not be referred when the mode is switched.				
No	Abbr.	Parameter function and description	Mode	Default	Range	Unit

PA36 PA37	FNO2 (*) FNO3 (*)	Function option 2(reserved for factory test only) Function option 3(reserved for factory test only)	All	0000h	0000h ~ FFFFh	N/A
PA38	AOP3	One-touch tuning function option.	Pr, Pt, S	0000h	0000h ~ 0111h	N/A
No	Abbr.	Parameter function and description	Mode	Default	Range	Unit

PA39	POL	Motor rotatio	n direction optio					
	(*)	The relation	among motor					
	()	command p	ulse train rotation					
		output pulse	direction.					
		0 z y	x					
		x: the input	 t pulse commar					
		direction or	otion					
			Rotation direct	1				
		Setting	Forward pulse	Reverse pulse				
		value	train input	train input	Pt		0000h	
		0	CCW	CW				
		1	CW	CCW	ιι,		000011	
		y: to set t	he relationship	S,	0000h	~	N/A	
		rotation dire	ection and enco	Т		0111h		
		y motor	r CCW rotation					
		A-phase		A-phase				
		0 B-phase		B-phase				
		A-phase	<u>ក្រក</u>					
		1 B-phase	l l l l l l l l l l l l l l l l l l l	B-phase				
		z: encoder	output puise se $\Lambda 1 A$					
		z=0. output	division ratio					
PA40	SPW	Special para	meter write-in fu	nction				
	(▲)	When the p	arameter is set					
		default value	e will be restored			0000h		
		i ne servo ca	an be operated c	All	0000h	~	N/A	

PA41	POSPD Max. speed output setting of encoder According to the application of the motor, the user sets the actual maximum speed that would be reached, if the speed exceeds the setting, AL.30 will occur. Note: when PA41 set to 0, it indicates this function is disabled.									All	6300	0 ~ 6500	rpm mm/s
PA42	BLK	Parame	eter group write-inhibit setting										
	(*)	Value	PA Group	PB Group	PC Group	PD Group	PE Group	PF Group	PL Group				
		0000 (Default value)		readable and writable									
		0001		re	unreada readable and writable not writable								
		0002		readat	dable and writable r r e and writable writ			unreada not w	able and ritable	All	0000h	~ 00FFh	N/A
		0003	re	adable a				adable ai writable	nd not				
		0004	readat	ole and w	nd writable unreadable and not writable				ritable				
		0005	readat writa	readable and unreadabl writable			le and no	ot writable					
		0006	readabl e and writable		unreadable and not writable								
		0007	Only PA42 is readable, the others is unreadable and not writable						and not				
	Note 1: the parameter which is unreadable and not writable it means the group is invisible on the panel.							vritable,					

No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PA45	FBP (▲)	Position command pulse number setting per revolution. When PA44 = 1, this parameter can set the position command pulse number per revolution.	Pr,Pt	10000	10 ³ ~ 10 ⁶	pulse
PA46	ATST	One-touch tuning operation(Reserved for factory test only)	Pr, Pt, S	0000h	0000h ~ FF21h	N/A
PA47	TLP	Positive torque limit The parameter is to limit the torque generated during forward rotation. The unit of setting value is 0.1%. The calculation is as follows: Positive torque limit = $\frac{motor max current}{motor rated current} * \frac{PA47}{30}$	All	5000	0 ~ 32700	0.1%
PA48	TLN	Negative torque limit The parameter is to limit the torque generated during reverse rotation. The unit of setting value is 0.1%. The calculation is as follows Negative torque limit = $\frac{motor max current}{motor rated current} * \frac{PA48}{30}$	All	5000	0 ~ 32700	0.1%
PA49	HMTQL	Homing-Torque detection level The parameter can only be used in the torque homing mode. After triggering the homing, the motor will run in one direction and will make the mechanism hit the bumper pad. When the drive detects that the torque value keeps exceeding PA49[%] for PA50[ms], it will take current position as origin.	PR	50	1 ~ 300	%

No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PA50	HMTQT	Homing-Torque attained time setting	PR	2000	2 ~ 2000	ms
PB01	NHF1	Frequency of machine resonance suppression filter 1 This parameter is to set the frequency of machine resonance suppression filter 1. The schematic diagram is as follows:	All	1000	10 ~ 4000	Hz
PB02	NHD1	Attenuation of machine resonance suppression filter 1 This parameter is to set attenuation rate of machine resonance suppression and it should use together with NHF1. Note: 0:turn off the Notch filter function.	All	0	0 ~ 32	dB
PB03	NLP	Resonance suppression low-pass filter This parameter is to set the time constant of resonance suppression low-pass filter.	All	10	0~	0.1ms

No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PB04	PST	Position command filter time constant This parameter is to set the filter time constant of position command. With an appropriate setting, the motor can run smoothly when the servo drive encounters a sudden change of position command.	Pt,Pr	3	0 ~ 20000	ms
PB05	FFC	The actual time to reach the target position is 5 times of PST. Position feed-forward gain If the system runs smoothly in position mode, increasing the feed-forward gain value will reduce the position tracking errors. If the system has	Pt,Pr	0	0 ~ 200	%
PB06	GD1	 resonated in position mode, decreasing the gain value will reduce mechanical vibration. Servo motor load inertia ratio This parameter is to set ratio of load inertia to servo motor inertia. When PA02= 1 which is set to auto gain tuning mode 1, it will set PB06 automatically. ★ When set to Linear motor drive(PL01=1), the range is 0 ~ 65535. 	AII	70	0 ~ 1200 or 65535	0.1 times 0.1kg

No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PB07	PG1	Position loop gain Increasing the position control gain can improve the traceability to position command and reduce the position errors. But too large setting value may cause noise and vibration. When auto gain tuning mode is used, PB07 will be set automatically.	Pt,Pr	45	4 ~ 1024	rad/s
PB08	VG1	Speed loop gain Increasing the speed control gain can improve the response speed, But too large setting value may cause vibration and noise. When auto gain tuning mode is used, PB08 will be set automatically.	Pt, Pr, S	183	40 ~ 9000	rad/s
PB09	VIC	Speed integral gain this parameter is integral time constant of speed loop.	Pt, Pr, S	34	1 ~ 1000	ms
PB10	VFG	Speed feed-forward gain value: If the system runs smoothly in speed control mode, increasing the feed-forward gain value will reduce the speed tracking errors. If the system has resonance in speed control mode, decreasing the gain value will reduce the mechanism vibration.	S	0	0 ~ 200	%
PB11	CDP (*)	Gain switching condition option: $\begin{array}{c c} \hline 0 & 0 & x \\ \hline x=0: \ disable \ gain \ switching \ function \\ x=1: \ perform \ gain \ switching \ when \ CDP \ is \ ON. \\ x=2: \ perform \ gain \ switching \ when \ position \\ command \ frequency >= \ CDS \ setting \\ x=3: \ perform \ gain \ switching \ when \ position \ error \\ pulse >= \ CDS \ setting. \end{array}$	Pt, Pr, S	0000h	0000h ~ 0008h	N/A

		x=4: perform gain switching when servo motor rotation speed >= CDS setting.				
		x=5: perform gain switching when CDP is OFF.				
		x=6: perform gain switching when position command frequency <= CDS setting				
		x=7: perform gain switching when position error pulse <= CDS setting				
		x=8: perform gain switching when servo motor rotation speed <= CDS setting				
PB12	CDS	Gain switching condition value			0	kpps
		The set value of the CDS (kpps, pulse, rpm) is varied according to CDP setting, and its unit is	Pr,	10	~	pulse
		depended on the switching item.	S		400000 0	rpm mm/s
PB13	CDT	Gain switching time constant	Pt,		0	
		The CDT is used to smooth the gain switching,	Pr,	1	~	ms
		switching the CDP and CDS conditions.	S		1000	
PB14	GD2	Servo motor load inertia ratio 2	Pt,		0	0.1
		This parameter is to set ratio of load inertia to motor inertia, which is only valid during gain	Pr,	70	~	time
		switching.	S		1200	0.1kg
PB15	PG2	Position loop gain change ratio	Pt		10	
		ratio, and it's valid only after the auto tuning	Pr	100	~	%
		function is disabled.			500	
PB16	VG2	Speed loop gain change ratio	Pt,		10	
		This parameter is to set speed loop gain change ratio and it's valid only after the auto gain tuning	Pr,	100	~	%
		function is disabled.	S		500	
PB17	VIC2	Speed integral gain change ratio	Pt,	100	10	07
		This parameter is to set speed integral gain change ratio, and it's only valid after the auto gain	Pr,	100	~	70

		tuning function is disabled.	S		500	
PB18	SFLT	Speed command low-pass filter smooth time constant Increasing time constant will smooth the speed command curve, but it will slow down the response. Note: 0 means this function is disabled. target potisiton B3% B3% B3% B3% B3% B3% B3% B3% B3% B3%	S, T	0	0 ~ 1000	ms

PB19	TQC	Torque command filter time constant				
		This parameter is to set filter time constant of torque command. With an appropriate setting, the motor can run smoothly when the servo drive encounters a sudden change of torque command. $Torque \frac{1}{1000} \int_{1000}^{1000} \frac{1}{1000} \int$	Т	0	0 ~ 5000	ms
No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PB20	SJIT	Speed feedback filter time constant			0	
		This parameter is to set speed feedback filter time	All	0	~	0.1ms
		constant.			1000	
PB21	NHF2	Frequency of machine resonance suppression filter 2		1000	10	Hz
		This parameter is to set the frequency of machine resonance suppression filter, and the usage is same as PB01.	All		~ 4000	

PB22	NHD2	Attenuation of machine resonance suppression filter 2 This parameter is to set the attenuation rate of machine resonance suppression filter and it should use together with NHF2. Note: 0: turn off Notch filter function	All	0	0 ~ 32	dB
PB23		Reserved	All	0	0~1	N/A
PB24	VDC	Speed differential compensation This parameter is to set speed differential compensation, it's valid when DI terminal proportional control signal is ON.	Pr, Pt, S	980	0 ~ 1000	N/A
PB25	NHF3	Frequency of machine resonance suppression filter 3 This parameter is to set the frequency of machine resonance suppression filter, its usage is the same as PB01.	All	1000	10 ~ 4000	Hz
PB26	NHD3	Attenuation of machine resonance suppression filter 3 This parameter is to set attenuation rate of machine resonance suppression filter and it should use together with NHF3. Note: 0: turn off Notch filter function	All	0	0 ~ 32	dB
PB27	ANCF	Auto resonance suppression mode setting 0: fixed. 1: the resonance frequency is fixed after an auto-scan. 2: keep auto-scan to search the resonance frequency.	All	1	0 ~ 2	N/A

PB28	ANCL	Auto resonance suppression detection level Increasing setting of PB28 will reduce the resonance sensitivity. On the other hand, decreasing the setting of PB28 will increase the resonance sensitivity.	All	50	1 ~ 300	%
PB29	AVSM	Auto low-frequency vibration suppression mode 0: fixed. 1: after an auto-scan then the vibration frequency is fixed Auto mode setting description: When the value is 1, it will automatically perform vibration suppression. When the vibration cannot be scanned or the scanned frequency is stable, the system will reset the parameter to 0 and automatically save the low-frequency vibration suppression frequency to PB31(VSF1)	Pr, Pt	0	0 ~ 1	N/A
PB30	VCL	Low-frequency vibration detection level setting. When automatic low-frequency vibration suppression is enabled (PB29=1), the system will search automatically. Decreasing the PB30 setting value will increase the detection sensitivity, but it is easy to misjudge noise or other non-main low-frequency vibration as vibration suppression frequencies. Increasing this value will decrease detection sensitivity. However, if the vibration amplitude of the mechanism is small, it is not easy to search for low frequency vibration.	Pr, Pt	50	1 ~ 8000	pulse

PB31	VSF1	Low-frequency vibration suppression frequency setting 1 To set the frequency 1 of low-frequency vibration suppression. Note: when PB31 is 0, it means the 1st group of low-frequency vibration suppression filter is off.	Pr, Pt	100	1 ~ 3000	0.1Hz
PB32	VSG1	Low-frequency vibration suppression gain 1 To set the first group of low-frequency vibration suppression gain. Increasing the value can improve the position response, but if the setting value is too large, it will jeopardize the motor to run smoothly. So it is recommended to set to 1.	Pr, Pt	0	0 ~ 15	N/A
No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PB33	VSF2	Low-frequency vibration suppression frequency 2 To set the frequency 2 of low-frequency vibration suppression. Note: when PB33 is 0, it means the 2nd group of low-frequency vibration suppression filter is off.	Pr, Pt	100	1 ~ 3000	0.1Hz

PB34	VSG2	Low frequency vibration suppression gain 2				
		To set the second group of low-frequency vibration suppression gain. Increasing the value can improve the position response, but if the setting value is too large, it will jeopardize the motor to run smoothly. So it is recommended to set to 1.	Pr, Pt	0	0 ~ 15	N/A
PB35	FRCL	Friction compensation level Set friction compensation level(for the rated torque percentage, 0 = turn off. 1 or above = enable friction compensation)	Pr, Pt, S	0	0 ~ 100	%
PB36	FRCT	Friction compensation smoothing time constant To set friction compensation smoothing time constant.	Pr, Pt, S	0	0 ~ 1000	ms
PB37	FRCM	Friction compensation mode option 0: the compensation value remains unchanged when motor speed is slower than the value of PC17. 1: the compensation value reduces to 0 gradually when motor speed is slower than the value of PC17.	Pr, Pt, S	0	0 ~ 1	N/A
PB38	FFCT	Position feed-forward filter time constant Set the filter time constant when position feed-forward gain is used.	Pr, Pt	0	0 ~ 1000	0.1ms
PB39	SVP (▲)	Synchronous speed control gain: Increase the synchronous speed control gain to enhance the speed following between two motors. If the value is too high, it may cause vibration and noise.	Pr, Pt, S, T	0	0 ~ 8191	rad/s

and reduce the speed errors between two motors. S, 0 ~ 1023 Note: if the value is too large, it may cause vibration and noise. T 1023 1023 PB41 SPI Synchronous position integral compensation integral compensation can enhance the position following and reduce the position errors between two motors. Increasing the synchronous position integral compensation can enhance the position following and reduce the position errors between two motors. Pr, 0 Note: if the value is too large, it may cause vibration and noise. It is recommended that you set this value to the same value as PB09. Pr, 0 ~ Pt, 0 ~ r 1023 1023	No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
and reduce the speed errors between two motors.S,0~1023Note: if the value is too large, it may causeT1023vibration and noise.1023	PB41	SPI (▲)	Synchronous position integral compensation Increasing the synchronous position integral compensation can enhance the position following and reduce the position errors between two motors. Note: if the value is too large, it may cause vibration and noise. It is recommended that you set this value to the same value as PB09.	Pr, Pt, S, T	0	0 ~ 1023	rad
PB40 SVI Synchronous speed integral compensation: Pr, 0 (▲) Increase the synchronous speed integral compensation to enhance the speed following Pt, 0	PB40	SVI (▲)	Synchronous speed integral compensation: Increase the synchronous speed integral compensation to enhance the speed following and reduce the speed errors between two motors. Note: if the value is too large, it may cause vibration and noise.	Pr, Pt, S, T	0	0 ~ 1023	rad/s

PB42	SBW	Synchronous control bandwidth:				
	(▲)	If you are unsure about PB39~PB41 setting, set the value of synchronous control bandwidth instead so that the value corresponds to PB39~PB41. When the deviation between the synchronous control bandwidth and the servo bandwidth is greater, the synchronous following will be better. But when speed loop bandwidth + synchronous control bandwidth > system allowable bandwidth , it may cause resonance of system.	Pr, Pt, S, T	0	0 ~ 1023	Hz
		Note: when increasing the speed loop bandwidth and synchronous control bandwidth, PB03 response should faster than them.				
PB43	SVL	Synchronous speed error low-pass filter: When the synchronous control is affected by low resolution, meaning that noise (less sharp and rough sound) is generated, you can use low-pass filter to suppress the noise. This filter must be faster than the synchronous control bandwidth.	Pr, Pt, S, T	0	0 ~ 1000	0.1ms
PB44	PPD	Position loop compensation Increasing this gain value will improve the tractability of position command.	Pr, Pt	0	0~500	N/A
PB45	NHF4	Frequency of machine resonance suppression filter 4 This parameter is to set the frequency of machine resonance suppression filter, its usage is same as PB01.	All	1000	10 ~ 4000	Hz

PB46	NHD4	Attenuation of machine resonance suppression filter 4 This parameter is to set attenuation rate of machine resonance suppression filter and it should use together with NHF4. Note: 0: turn off Notch filter function.	All	0	0 ~ 32	dB
PB47	NHF5	Frequency of machine resonance suppression filter 5 This parameter is to set the frequency of machine resonance suppression filter, its usage is same as PB01.	All	1000	10 ~ 4000	Hz
PB48	NHD5	Attenuation of machine resonance suppression filter 5 This parameter is to set attenuation rate of machine resonance suppression filter and it should use together with NHF5. Note: 0: turn off Notch filter function.	All	0	0 ~ 32	dB
PB49	DOB	External interference compensation gain In position mode, increasing this parameter setting value can reduce position overshoot. In speed mode, increasing this parameter setting value can reduce speed overshoot Note: if the parameter setting is too large, it might cause system vibration.	All	0	0 ~ 100	N/A
PB50	MVF	Position command average filter time constant 0: disable 1~50: enable the filter function	Pr, Pt	0	0 ~ 50	ms

No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PB51	NHW	Width of machine resonance suppression filter 1:				
		This parameter is to set the first group of machine resonance suppression filter width.			1	
		Note1: if PB02=0, this function is disabled.	All	5	~	N/A
		Note2: PB01, PB02 and PB51 are the first group of machine resonance suppression filter related parameters.			10	
PB52	NHW2	Width of machine resonance suppression filter 2:				
		This parameter is to set the second group of machine resonance suppression filter width.			1	
		Note1: if PB22=0, this function is disabled.	All	5	~	N/A
		Note2: PB21, PB22 and PB52 are the second group of machine resonance suppression filter related parameters.			10	
PB53	NHW3	Width of machine resonance suppression filter 3:				
		This parameter is to set the third group of machine resonance suppression filter width.			1	
		Note1: if PB26=0, this function is disabled.	All	5	~	N/A
		Note2: PB25, PB26 and PB53 are third group of machine resonance suppression filter related parameters.			10	
PB54	NHW4	Width of machine resonance suppression filter 4:				
		This parameter is to set the 4th group of machine resonance suppression filter width.			1	
		Note1: if PB45=0, this function is disabled.	All	5	~	N/A
		Note2: PB44, PB45 and PB54 are 4th group of machine resonance suppression filter related parameters.			10	

PB55	NHW5	Width of machine resonance suppression filter 5: This parameter is to set the 5th group of machine resonance suppression filter width. Note1: if PB47=0, this function is disabled. Note2: PB46, PB47 and PB55 are 5th group of machine resonance suppression filter related parameters.	All	5	1 ~ 10	N/A
PB56		Reserved				
PB57	TOF (*)	z-axis torque compensation When used in Z-axis applications, the torque command can be compensated. Note: improper settings may cause system instability	All	0	-3000 ~ 3000	0.1%
PB58	VSD1	Attenuation of Low-frequency suppression 1 This parameter is to set the first group of low-frequency suppression attenuation rate. Note 1: if PB32=0, this function is disabled. Note 2: PB31, PB32 and PB58 are first group of low frequency suppression filter related parameters.	Pr, Pt	80	0 ~ 1000	dB
PB59	VSD2	Attenuation of Low-frequency suppression 2 This parameter is to set 2nd group of low frequency suppression attenuation rate. Note 1: if PB34=0, this function is disabled. Note 2: PB33, PB34 and PB59 are 2nd group low frequency suppression filter related parameters.	Pr, Pt	80	0 ~ 1000	dB

No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PC01	STA	Acceleration time constant The acceleration time is required when the motor accelerates from 0 rpm to the rated motor speed, which is defined as the acceleration time constant. For example, if the servo motor rated speed is 3000 rpm, this parameter is set to 3000(3s). When the speed command is set to 1000 rpm, it takes 1 second for the motor to accelerate from 0 rpm to 1000 rpm. Please refer to section 6.4.3 for the instruction in Pr mode. The acceleration time in JOG mode is also set by this parameter. If the speed command is less than rated speed, the acc/dcc time would less than rated speed, the speed rated speed rated speed time	S, T	200	0 ~ 65550	ms
PC02	STB	Deceleration time constant The deceleration time is required when the motor decelerates from rated speed to 0 rpm, which is defined as the deceleration time constant. Please refer to section 6.4.3 for the instruction in Pr mode. The deceleration time in JOG mode is also set by this parameter.	S, T	200	0 ~ 65550	ms
PC03	STC	S-curve acceleration /deceleration time constant During acceleration/deceleration, a three-stage acceleration/deceleration curve is applied to provide smooth processing. An appropriate STC setting can improve the stability of the motor	Pr, S, T	0	0 ~ 10000	ms

		when starting and stanning				
		when starting and stopping.				
		In order to make the command curve smoother,				
		the S curve can be added, and there will be a				
		slight deviation in the acceleration/deceleration time.				
		The time of motor accelerate to rated speed = STA + STC.				
		The time of motor decelerate from the rated speed to $0 = STB + STC$.				
PC04	JOG	JOG speed command			0	
		This parameter is JOG speed setting in JOG		000	-	rpm
		operation mode.	All	300	~	mm/s
					6000	
PC05	SC1	Internal speed command 1(Limit 1)				
		In speed control mode, this parameter is speed command 1.	S		-6000	rom
		In torque control mode, this parameter is speed	0,	100	~	ipin
		limit 1 and without direction.	Т		6000	mm/s
		Note: the maximum internal speed command				
		value is the maximum speed value of motor.				
PC06	SC2	Internal speed command 2(Limit 2)				
		In speed control mode, this parameter is used as				
		internal speed command 2.	S,		-6000	rpm
		In torque control mode, this parameter is used as	Ŧ	500	~	
		speed limit 2 and without direction.	I		6000	mm/s
		Note: the maximum internal speed command				
		value is the maximum motor speed.				
PC07	SC3	Internal speed command 3(Limit 3)			-6000	
		In speed control mode, this parameter is used as	S,	1000	~	rpm
		internal speed command 3.	Т	1000		mm/s
		In torque control mode, this parameter is used as			6000	

		speed limit 3 and without direction. Note: the maximum internal speed command value is the maximum motor speed.				
PC08	SC4	Internal speed command 4(Limit 4) In speed control mode, this parameter is used as internal speed command 4. In torque control mode, this parameter is used as speed limit 4 and without direction. Note: the maximum internal speed command value is the maximum motor speed.	S, T	200	-6000 ~ 6000	rpm mm/s
PC09	SC5	Internal speed command 5(Limit 5) In speed control mode, this parameter is used as internal speed command 5. In torque control mode, this parameter is used as speed limit 5 and without direction. Note: the maximum internal speed command value is the maximum motor speed.	S, T	300	-6000 ~ 6000	rpm mm/s
PC10	SC6	Internal speed command 6(Limit 6) In speed control mode, this parameter is used as internal speed command 6. In torque control mode, this parameter is used as speed limit 6 and without direction. Note: the maximum internal speed command value is the maximum motor speed.	S, T	500	-6000 ~ 6000	rpm mm/s
PC11	SC7	Internal speed command 7(Limit 7) In speed control mode, this parameter is used as internal speed command 7. In torque control mode, this parameter is used as speed limit 7 and without direction. Note: the maximum internal speed command value is the maximum motor speed.	S, T	800	-6000 ~ 6000	rpm mm/s

No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PC12	VCM (▲)	Maximum motor speed for analog speed command Set the motor speed corresponding to 10V (maximum voltage) for the analog speed command. Speed mode: <u>Speed control command = Setting value*input</u> <u>voltage/10.</u> Example:	S	3000	0 ~ 30000	rpm mm/s
		input is 10V, then the speed control command is 2000 rpm. If external voltage input is 5V, then the speed control command is 1000rpm. Torque mode: <u>Speed limit value = Setting value*input voltage / 10</u> This parameter setting indicates the speed limit value corresponding to maximum voltage.	т	3000	0 ~ 30000	rpm mm/s
PC13	TLC (▲)	Maximum output of analog torque command: Set the torque corresponding to 10V (maximum voltage) for the analog torque command. Torque mode: <u>Torque command= input voltage / 10* setting value</u> Example: If setting value is 100 and the external voltage input is 10V, then the torque control command is 100% of the maximum torque. If the external voltage input is 5V, then the torque control command is 50% of the maximum torque. Position and speed mode:	T Pr, Pt	100	0 ~ 2000	%
		Position and speed mode: PC13 can set as <u>torque limit</u> in position and speed mode, you can refer to section 6.3.4 for detail.	Pt, S	100	~ 2000	%

No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PC14	MOD	Analog monitor output:				
		Set the analog monitor output signal, and there are 2 output channels: ch1 and ch2 0 ch2 0 ch1 The setting value of Ch1 and Ch2, and its corresponding output are as follows:				
		0: motor speed(±10V/2 times rated speed)		0100h		
		1: motor torque((±10V/ maximum torque)			0000h	
		2: speed command((±10V/2 times rated speed)	All		~	N/A
		3: effective load rate(±10V/±300%)			0909h	
		4:pulse command frequency(±10V/4300k pulse/s)				
		5:current command(±10V/max current command)				
		6: dc bus voltage(10V/450V)				
		7: error pulse number(±10V/4194304pulse)				
		8: error pulse number(±10V/10000 pulse)				
		9: error pulse number(±10V/100 pulse)				
PC15	SVZR	Analog input voltage zero voltage range	S		0	
	(*)	When the analog speed voltage is within the setting	о, т	10	~	mv
		range, the motor speed will be regarded as 0 rpm.			1000	
PC16	MBR	Electromagnetic brake sequence output time				
		If PC16≥0, this parameter indicates the delay time from SON OFF to electromagnetic brake MBR signal off.	All	100	-1000 ~	ms
		If PC16 < 0, this parameter PC16 indicates that to			1000	
		extend SERVO ON timing, MBR will turn off first, and then SERVO ON will be off after the delay time.				

No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PC17	ZSP	Zero speed range: Set the zero speed signal output speed range. If the forward/reverse rotation motor speed is lower than this parameter setting value, the DO:ZSP will be on.	All	50	0 ~ 10000	rpm mm/s
PC18	COP1 (*)	Stop option and power interruption & restart option $\begin{array}{c c c c c c c c c c c c c c c c c c c $	All	0010h	0000h ~ 0011h	N/A
PC19	COP2 (*)	Alarm history clear option and overload early warning option. 0 z y x x: alarm record clear. When set to clear, the clear action will only be activated after the power cycling, and it will be automatically set to 0 after the clear is completed. x=0: not clear alarm history x=1: clear alarm history y: overload early warning y=0: no action when warning occurs.	All	0000h	0000h ~ 0111h	N/A

		y=1: motor stops immediately when warning occurs				
		z: set the panel display status after alarm is cleared.				
		z=0: the display stays in alarm screen after alarm is cleared(AL).				
		z=1: the display go back to the former screen after alarm is cleared.				
PC20	SNO	Servo drive communication device number				
	(*)	During communication different device number must be set for different servo drives. If two drives are set to the same device number, it will cause communication failure.	All	1	1 ~ 32	Numb er
PC21	CMS	Communication mode option				
	(*)	00xx: communication reply delay time(the parameter change is valid only after power cycling)x=0: reply within 0.5ms delay.x=1: reply after 1ms delay.	All	0	0 ~ 2	N/A
		x=2: reply after 2ms delay				
PC22	BPS	Communication protocol option				
	(*)	0 0 y x x: communication protocol optionx=0: 7,N,2 (Modbus, ASCII)x=1: 7,E,1 (Modbus, ASCII)x=2: 7,O,1 (Modbus, ASCII)x=3: 8,N,2 (Modbus, ASCII)x=4: 8,E,1 (Modbus, ASCII)	All	0010h	0000h ~ 0058h	N/A

		x=5: 8,O,1 (Modbus, ASCII)				
		x=6: 8,N,2 (Modbus, RTU)				
		x=7: 8,E,1 (Modbus, RTU)				
		x=8: 8,O,1 (Modbus, RTU)				
		y: RS-485 communication speed setting				
		y=0: 4800bps				
		y=1: 9600bps				
		y=2: 19200bps				
		y=3: 38400bps				
		y=4: 57600bps				
		y=5: 115200bps				
PC23	SIC	Serial communication timeout option				
		Time-out duration could be set from 1 to 60			0	
		seconds.			0	
		Note: if it is set to 0, the timeout checking function is	All	0	~	S
		disabled.			60	

No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
No PC24	Abbr. DMD (*)	Parameter function and description 0 y x x: display option after power on(hexadecimal) x=0: motor feedback pulse number (high 5-digit) (before E-Gear ratio) x=1: motor feedback pulse number (low 5-digit) (before E-Gear ratio) x=2: input number of pulse commands (high 5-digit) (before E-Gear ratio) x=3: input number of pulse commands (low 5-digit) (before E-Gear ratio) x=4: input pulse command and feedback pulse deviation (before E-Gear ratio) x=5: pulse command input frequency x=6: current motor speed(Linear motor speed) x=7: analog speed command/limit voltage x=8: speed command/limit x=9: analog torque command/limit voltage x=A: torque command/limit x=B: effective load rate x=C: peak load rate x=D: DC Bus voltage x=E: load inertia ratio x=F: instantaneous torque x=10: regenerative load rate x=11: absolute pulse number of encoder Z phase x=12: feedback pulse number of full-closed loop encoder(low 5-digit) x=13: command pulse number of full-closed loop encoder(high 5-digit)	All	Default	Range 0000h ~ 0116h	Unit N/A
No	Abbr.	x=16: drive capacity margin(by remaining current) Parameter function and description	Mode	Default	Range	Unit
					5	

after power ony=1: status is displayed according setting value ofPC24.x.y=0: the drive status is displayed according to thecontrol mode, and the display status in differentcontrol modes is shown in the following table.Control modeThe drive statusdisplayed after poweronPositionMotor feedback pulsenumber (Note 1)Position andMotor feedback pulsespeed dual modenumber(Note 1)/motor speed(Linear motor speed)SpeedMotor speeddual mode(Linear motor speed)speed and torqueMotor speeddual mode(Linear motor speed)forqueAnalog torque commandvoltageTorque andTorque andTorque commandposition dual/motor feedback pulsemodenumber(note1)	y: status display ac	cording to the control mod	le	
y=1: status is displayed according setting value of PC24.x.y=0: the drive status is displayed according to the control mode, and the display status in different control modes is shown in the following table.Control modeThe drive status displayed after power onPositionMotor feedback pulse number (Note 1)Position and speed dual modeMotor feedback pulse number(Note 1)Speed dual mode (Linear motor speed)Speed (Linear motor speed)Speed and torque dual modeMotor speed (Linear motor speed)Torque position dual (motor feedback pulse number(Note 1)Torque (Linear motor speed)Note 1: display the motor feedback pulse number(note1)Note 1: display the motor feedback pulse number(note1)	after power on			
PC24.x.y=0: the drive status is displayed according to the control mode, and the display status in different control modes is shown in the following table.Control modeThe drive status displayed after power onPositionMotor feedback pulse number (Note 1)Position and speed dual modeMotor feedback pulse number(Note 1)Position and (Linear motor speed)Motor speed (Linear motor speed)SpeedMotor speed (Linear motor speed)Speed and torque dual modeMotor speed (Linear motor speed)Torque position dual motor feedback pulse number(note1)Torque and position dual (motor feedback pulse number(note1))Note 1: display the motor feedback pulse number after E-Gear ratio (low 5-digit)	y=1: status is displa	yed according setting value	of	
y=0: the drive status is displayed according to the control mode, and the display status in different control modes is shown in the following table.Control modeThe drive status displayed after power onPositionMotor feedback pulse number (Note 1)Position and speed dual modeMotor feedback pulse number(Note 1)Position and speed dual modeMotor speed (Linear motor speed)SpeedMotor speed (Linear motor speed)Speed and torque dual modeMotor speed (Linear motor speed)Speed and torque dual modeMotor speed (Linear motor speed)Torque position dual motor feedback pulse number(note1)Torque command voltageTorque and position dual (motor feedback pulse number(note1)Torque number (note 1)Note 1: display the motor feedback pulse number(note1)Note 1: display the motor feedback pulse number (note 1)	PC24.x.			
control mode, and the display status in different control modes is shown in the following table.Control modeThe drive status displayed after power onPositionMotor feedback pulse number (Note 1)Position and speed dual modeMotor feedback pulse number(Note 1) /motor speed (Linear motor speed)SpeedMotor speed (Linear motor speed)Speed and torque dual modeMotor speed (Linear motor speed)Speed and torque dual modeMotor speed (Linear motor speed)TorqueAnalog torque command voltageTorque and position dual modeTorque command /motor feedback pulse number(note1)Note 1: display the motor feedback pulse number after E-Gear ratio (low 5-digit)	y=0: the drive statu	s is displayed according to the	ne	
control modes is shown in the following table.Control modeThe drive status displayed after power onPositionMotor feedback pulse number (Note 1)Position and speed dual modeMotor feedback pulse number(Note 1) /motor speed (Linear motor speed)SpeedMotor speed (Linear motor speed)Speed and torque dual modeMotor speed (Linear motor speed)Speed and torque dual modeMotor speed (Linear motor speed)TorqueAnalog torque command voltageTorque and position dual (motor feedback pulse number(note1)Note 1: display the motor feedback pulse number after E-Gear ratio (low 5-digit)	control mode, and	the display status in differe	nt	
Control modeThe drive status displayed after power onPositionMotor feedback pulse number (Note 1)Position and speed dual modeMotor feedback pulse number(Note 1) /motor speed (Linear motor speed)SpeedMotor speed (Linear motor speed)Speed and torque dual modeMotor speed (Linear motor speed)Speed and torque dual modeMotor speed (Linear motor speed)TorqueAnalog torque command voltageTorque and position dual modeTorque command /motor feedback pulse number(note1)Note 1: display the motor feedback pulse number after E-Gear ratio (low 5-digit)	control modes is sh	own in the following table.		
Control modedisplayed after power onPositionMotor feedback pulse number (Note 1)Position and speed dual modeMotor feedback pulse number(Note 1) /motor speed (Linear motor speed)SpeedMotor speed (Linear motor speed)Speed and torque dual modeMotor speed (Linear motor speed)Speed and torque dual modeMotor speed (Linear motor speed)TorqueAnalog torque command voltageTorque and position dual modeTorque command (motor feedback pulse number(note1)Note 1: display the motor feedback pulse number after E-Gear ratio (low 5-digit)		The drive status		
Control modeanophayed atter performedonPositionPosition and speed dual modeNotor feedback pulse number(Note 1) /motor speed (Linear motor speed)SpeedSpeed and torque dual modeMotor speed (Linear motor speed)Speed and torque dual modeMotor speed (Linear motor speed)Speed and torque dual modeMotor speed (Linear motor speed) /analog torque command voltageTorqueAnalog torque command voltageTorque and position dual modeImage torque command voltageNote 1: display the motor feedback pulse number(note1)Note 1: display the motor feedback pulse number (low 5-digit)	Control mode	displayed after power		
PositionMotor feedback pulse number (Note 1)Position and speed dual modeMotor feedback pulse number(Note 1) /motor speed (Linear motor speed)SpeedMotor speed (Linear motor speed)Speed and torque dual modeMotor speed (Linear motor speed)Speed and torque dual modeMotor speed (Linear motor speed)Torque voltageAnalog torque command voltageTorque and position dual modeTorque command /motor feedback pulse number(note1)Note 1: display the motor feedback pulse number after E-Gear ratio (low 5-digit)		on		
Note:	Position	Motor feedback pulse		
Position and speed dual modeMotor feedback pulse number(Note 1) /motor speed (Linear motor speed)SpeedMotor speed (Linear motor speed)Speed and torque dual modeMotor speed (Linear motor speed)Speed and torque dual modeMotor speed (Linear motor speed) /analog torque command voltageTorqueAnalog torque command voltageTorque and position dual modeTorque command /motor feedback pulse number(note1)Note 1: display the motor feedback pulse number after E-Gear ratio (low 5-digit)		number (Note 1)		
speed dual mode number(Note 1) /motor speed (Linear motor speed) Speed Motor speed (Linear motor speed) Speed and torque Speed and torque Motor speed dual mode (Linear motor speed) /analog torque command voltage Torque Analog torque command voltage Torque and Torque and Torque command position dual /motor feedback pulse mode number(note1)	Position and	Motor feedback pulse		
/motor speed (Linear motor speed)SpeedMotor speed (Linear motor speed)Speed and torque dual modeMotor speed (Linear motor speed) /analog torque command voltageTorqueAnalog torque command voltageTorque and position dual modeTorque command /motor feedback pulse number(note1)Note 1: display the motor feedback pulse number after E-Gear ratio (low 5-digit)	speed dual mode	number(Note 1)		
Image: Construct of the constructionImage: ConstructionSpeedMotor speed (Linear motor speed)Speed and torque dual modeMotor speed (Linear motor speed) /analog torque command voltageTorqueAnalog torque command voltageTorque and position dual modeTorque command /motor feedback pulse number(note1)Note 1: display the motor feedback pulse number after E-Gear ratio (low 5-digit)		/motor speed		
Speed Motor speed (Linear motor speed) Speed and torque dual mode Motor speed (Linear motor speed) dual mode (Linear motor speed) /analog torque command voltage /analog torque command voltage Torque and position dual mode Torque command /motor feedback pulse number(note1) Note 1: display the motor feedback pulse number after E-Gear ratio (low 5-digit)		(Linear motor speed)		
Image: Speed and torque Motor speed dual mode (Linear motor speed) dual mode (Linear motor speed) /analog torque command voltage Torque Analog torque command voltage Torque and Torque and Torque command position dual /motor feedback pulse mode number(note1) Note 1: display the motor feedback pulse number after E-Gear ratio (low 5-digit)	Speed	Motor speed		
Speed and torque Motor speed dual mode (Linear motor speed) /analog torque command /analog torque command voltage Torque Torque and Torque command position dual /motor feedback pulse mode number(note1) Note 1: display the motor feedback pulse number after E-Gear ratio (low 5-digit)		(Linear motor speed)		
dual mode (Linear motor speed) /analog torque command voltage Torque Analog torque command voltage Torque and Torque command position dual /motor feedback pulse mode number(note1) Note 1: display the motor feedback pulse number after E-Gear ratio (low 5-digit)	Speed and torque	Motor speed		
/analog torque command voltage Torque Analog torque command voltage Torque and Torque command position dual /motor feedback pulse mode number(note1) Note 1: display the motor feedback pulse number after E-Gear ratio (low 5-digit)	dual mode	(Linear motor speed)		
voltage Torque Analog torque command voltage Torque and Torque command position dual /motor feedback pulse mode number(note1) Note 1: display the motor feedback pulse number after E-Gear ratio (low 5-digit)		/analog torque command		
TorqueAnalog torque command voltageTorque and position dualTorque command /motor feedback pulse number(note1)Note 1: display the motor feedback pulse number after E-Gear ratio (low 5-digit)		voltage		
voltageTorque and position dual modeTorque command /motor feedback pulse number(note1)Note 1: display the motor feedback pulse number after E-Gear ratio (low 5-digit)	Torque	Analog torque command		
Torque and position dual modeTorque command /motor feedback pulse number(note1)Note 1: display the motor feedback pulse number after E-Gear ratio (low 5-digit)		voltage		
position dual mode/motor feedback pulse number(note1)Note 1: display the motor feedback pulse number after E-Gear ratio (low 5-digit)	Torque and	Torque command		
modenumber(note1)Note 1: display the motor feedback pulse numberafter E-Gear ratio (low 5-digit)	position dual	/motor feedback pulse		
Note 1: display the motor feedback pulse number after E-Gear ratio (low 5-digit)	mode	number(note1)		
after E-Gear ratio (low 5-digit)	Note 1: display the r	notor feedback pulse numb	er	
	after E-Gear ratio (lov	v 5-digit)		

No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PC25	TL2	Internal torque limit 2 The setting description is the same as PA05. In addition, when using the internal parameter torque limit together with external input signals TL and TL1, different torque limits can be selected. Please refer to PA05 description.	All	100	0 ~ 100	%
PC26	VCO	Analog speed command/limit offset: Speed mode : correct voltage offset of analog speed command(VC). Torque mode : correct voltage offset of analog speed limit(VLA).	S, T	0	-8000 ~ 8000	mV
PC27	TLO	Analog torque command/limit offset: Torque mode : correct voltage offset of analog torque command(TC). Speed mode : correct voltage offset of analog torque limit(TLA).	S, T	0	-8000 ~ 8000	mV
PC28	MO1	Analog monitor MON1 voltage offset: Set analog monitor MON1 output voltage offset.	All	0	-999 ~ 999	mV
PC29	MO2	Analog monitor MON2 voltage offset: Set analog monitor MON2 output voltage offset.	All	0	-999 ~ 999	mV
PC30	MOG1	Analog monitor MON1 output proportion: If set analog monitor MON1 output rated speed to 3000rpm, MOG1 set to 50, it means that analog monitor 1 output voltage is maximum when the speed reaches 3000rpm.	All	100	1~100	%

No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PC31	MOG2	Analog monitor MON2 output proportion: This parameter is to set the maximum proportion of analog monitor MON2 output, its function is same as PC30.	All	100	1~100	%
PC32	CMX2	Electronic gear numerator 2 To set the 2nd group of electronic gear numerator.	Pt	1	1 ~ 2 ²⁶	N/A
PC33	CMX3	Electronic gear numerator 3 To set the 3rd group of electronic gear numerator.	Pt	1	1 ~ 2 ²⁶	N/A
PC34	CMX4	Electronic gear numerator 4 To set the 4th ^h group of electronic gear numerator.	Pt	1	1 ~ 2 ²⁶	N/A
PC35	VCL (*)	Analog speed voltage limit: This parameter is to limit the input voltage (VC) of the analog speed command. Setting it to 0 means no limitation. For example, if the analog voltage of the VC input is 10V, and PC35 is set to 5000, the drive will calculate the VC voltage as only 5V, and this can be used to control speed command/limit.	S, T	0	0 ~ 20000	mV

PC36	VMFT	VC/VLA speed voltage linear filter time constant:				
		PC36 is the moving filter and PB18 is the low-pass filter and. The difference between them is the moving filter can smooth the beginning and end of the step command, while the low-pass filter can only smooth the end of command.				
		Application:				
		If the servo receives the command from the controller for the position control loop in speed mode, the low-pass filter is recommended. If the setting is only for the speed/torque control, the moving filter is recommended for better smoothing.	S, T	0	0 ~ 40	0.1ms
		Original step analog Speed command Holding time Command that has gone through analog speed linear filtering				
PC37	DTA9	AL.09 initialization delay time:			0	
	(*)	This parameter is to set AL.09 initialization delay checking time when start-up, If set the value to 0, means that this function is turned off.	All	0	~ 20000	ms
PC38	FNO4	Function option 4				
	(*)	To force output the DO1~DO6 pin type option during initialization. The contact status of DO1 to DO6 is defined by the Bit0~Bit5 of this parameter, which defines the output contact as a contact or b contact. 0: initiate output as a contact 1: initiate output as b contact When this parameter used for DO6:ALM, set PC38 =0020h and the b contact will be output 0.5~1	All	0000h	0000h ~ 003Fh	N/A

No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PC39	LPS	Low-pass filter option 0 0 0 x 0: PB03 will be automatically adjusted according to response level setting(invalid when PA02=0) 1: PB03 need to be set manually.	All	0000h	0000h ~ 0001h	N/A
PC40	MBR2	The delay time to release electromagnetic brake MBR when Servo ON. When the electromagnetic brake function is activated, this parameter is to set the delay output time of electromagnetic brake(MBR) signal when servo on.	All	0	0 ~ 1000	ms
PC41	CAST	Capture: start address of data array The first data capture obtained is saved at start address in the data array. Note: this parameter is only writable when CAP function is turned off (PC44x.Bit0 = 0).	All	0	0 ~ 799	N/A
PC42	CAAX (■)	Capture: axis position: Displays the axis position of Capture pulse source. Note 1: this parameter is only writable when CAP function is turned off (PC44x.Bit0 = 0) Note 2: this parameter is write-protected when the axis source of Capture is the feedback position of the motor (PC44y.Bit = 2).	All	0	-2 ³¹ +1 ~ 2 ³¹ -1	Source pulse
PC43	CAND (∎)	Capture: number of capturing times: When CAP stops(PC44 x.Bit0 = 0), this parameter indicates the current number of captured data (readable and writable). When CAP is in operation (PC44 x.Bit0 = 1), this parameter indicates the remaining number of data to be captured (read-only); each time it captures one data(DI7 ON), the value of PC43 decrements by 1 until the value is 0, indicating that capturing is complete. Note: the total number of data from CAP, CMP and E-Cam cannot exceed 800.	All	1	1 ~ (800 - PC41)	N/A

No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PC44	CACT	Capture: activate control:				
No PC44	Abbr. CACT (■)	Parameter function and descriptionCapture: activate control: u z y x x x y x $x(HEX)$: activate Capture $x.bit3$ $x.bit2$ $x.bit1$ $x.bit0$ $x.Bit0$ = 1Start capturing; after capturing is complete, this bit is set to 0 automatically.PC43>0, the capturing data quantity decrease to 0. Capture is complete, DO: CAP_OK(ON)PC43=0:CAPfunctionDO:CAP_OK(OFF)Note: if need change this setting, turn off CAP function to write in. $x.Bit1$ = 1	Mode	Default	Range	Unit
		After capturing the first data, automatically set the current position as the first position reset data(PC45). x.Bit2 = 1 After capturing the first data, if PC50 d.Bit0 = 0, activate CMP function(PC50 x.Bit0 = 1) and reset PC49 to previously value, but this setting is invalid if CMP function is already activated. If PC50 d.Bit0 = 1, the high speed CMP function is enabled(PC50 x.Bit0 = 1). x.Bit3 = 1 Execute PR#50 after capturing is completed. y: source option of Capture y=0: capture is not working y=1: auxiliary encoder y=2: motor feedback position y=3: CN1(pulse command) z: capture DI: DI7 trigger edge z=0: rising edge trigger u(HEX): trigger minimum interval (unit: ms)	All	2010h	0 ~ F13Fh	N/A

No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PC45	CPRS	Capture: reset position after first data captured Please refer to PC44x. Bit1 description. Note: pay attention to upper limit of the maximum and minimum values when setting this parameter.	All	0	-10737 41823 ~ 10737 41823	Source pulse
PC46	СРМК	Capture: masking range When capturing multiple points (PC43>1), once one data is captured, the system stops(masking) range definition is as follows. (the last capture data source position ± PC46 is set as masking area)	All	0	0 ~ 1000 000	Source pulse
PC47	CMST	Compare: start address of data array: The first data to be compared is saved at start address in the data array. Note: this parameter is only writable when CMP turned off(PC50x.Bit = 0).	All	0	0 ~ 799	N/A
PC48	CMAX (∎)	Compare: axis position: This parameter displays the axis position of the CMP pulse source. Note1: this parameter is only writable when CMP stops (PC50 x.Bit = 0). Note 2: this parameter is write-protected when the axis source of Compare is the Capture axis(PC50 y = 0). Note3: when the axis source of Compare is main encoder(PC50 Y=2), this parameter is also write-protected. When you set PC50 Y=2, this parameter is reset to the feedback position of the motor. When the motor feedback position is redefined due to homing or Capture, the value will be different from the value of this parameter. In this	All	0	-2 ³¹ +1 ~ 2 ³¹ -1	Source pulse

		case, set PC50.Y to 0 and then to 2 to reset this parameter to the motor feedback position.				
PC49	CMNO (∎)	Compare: number of comparing times: When CMP is stopped (PC44 x.Bit0 = 0), the parameter indicates the number of data expected to be compared (readable and writable). When CMP is in operation(PC44 x.Bit0 = 1), this parameter indicates the remaining number of data to be compared (read-only). Each time it compares one data, the value of PC51 decrements by 1 until the value is 0, indicating that comparing is complete. Note: the total number of data from CAP, CMP and E-Cam cannot exceed 800.	All	1	1 ~ (800-P C47)	N/A
PC50	СМСТ (∎)	Compare: activate control d c b a u z y x x(HEX): activate Compare (d.Bit0=0)(DO4 is compare output pin) x .bit3 x.bit2 x.bit1 x.bit0 x .Bit0 = 1 Start comparing; automatically clear after finishing comparing PC49> 0: CMP quantity decrease to 0. PC49= 0: automatically turn off CMP. Note: you need turn off the CMP function to enable writing before change the setting. x .Bit1 = 1 Cycle mode, it will constantly reset the PC49.It need to turn off the CMP function to stop. x .Bit2 = 1 After comparing is completed, activate Capture(PC44 x.Bit0 = 1) and reset PC43 to previously value, but this setting is invalid if capture is already activated. x .Bit3 = 1	AII	0064 0010h	0001 0000h ~ FFFF 312Fh	N/A

No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PC51	CMOF1	Compare: data shift: CMP data array, plus PC51 value and PC52 value are actual compare data. The actual data array for comparison =the original comparison data array+PC51+PC52. Note: once PC52 is valid, if PC 55 z=1, PC52 will reset to 0 automatically.	All	0	-1000 0000 ~ 1000 0000	Source pulse
PC52	(■)	Compare: data shift(can reset to zero): CMP data array, plus PC51 value and PC52 value are the actual data for comparison. The actual data array for comparison = the original data array for comparison +PC51+PC52. Note: once this parameter is valid, if PC55 z=1, PC52 will reset to 0 automatically.	All	0	-1000 0000 ~ 1000 0000	Source pulse
PC53	CSAX	Position for synchronous capture axis: This parameter indicates the position for the synchronous capture axis, which can be used as the command source for the E-Cam master axis (PC66.y = 5). When capture operates every two times, the servo calculates the error between the moving distance of this axis and the set interval between each synchronous capture action(PC54).	Pr	0	-21474 83648 ~ 21474 83647	Pulse unit of master axis
PC54	CSDS	Interval between each synchronous capture action: Sets the moving pulse amount of the synchronous capture axis between two capturing actions. Note: The new value can only be written to the parameter when capture is not in operation (PC44 x.Bit0 = 0).	Pr	100	10 ~ 1000 00000	Pulse unit of master axis
No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
------	-------	--	------	---------	--	------------------------------------
PC55	CPEX	 Capture/Compare additional function setting: 0 z y x x: CAP other functions x=1: when the CAP is completed, it will not be turned off, however, it will be performed the next cycle operation automatically, and the data captured by the CAP will still be saved in PC41! y: synchronous capture axis status(read only) y=1: DI7 triggers too many times (10 times) when the synchronous capture axis is activated 	All	0000h	0h ~ 0111h	N/A
		z: CMP other function z=1: PC52 automatically resets to 0 once PC52 is valid, otherwise PC52 keeps the value.				
PC56	CSDS	 Pulse error for synchronous Capture axis: When the synchronous Capture axis is operating, the pulse error should be 0. Each time when capturing data, the synchronous axis operates and this parameter updates once. It operates as follows: PC56 = incremental pulse amount between two capturing actions - interval pulse number between each synchronous Capture action (PC54) PC56 = PC53 accumulation – (PC54 * number of capturing times) You can also write the specified offset of the synchronous axis to this parameter. When the synchronous Capture axis is used for the rotary shear, modifying this parameter can shift the cutting position to the left or right. You can also use error offset compensation for synchronous Capture axis(PC58) to achieve this effect. 	Pr	0	-21474 83648 ~ 21474 83647	Pulse unit of master axis

PC57	CSDS	Maximum correct axis: This parameter lir of the synchronou Correction rate synchronous axis synchronous axis (100 – PC57)% PC57)%	ion rate for synd mits the correction is Capture axis. = Pulse numbers s / Pulse numbers < Correction			0~~	%	
		Correction	Synchronous	Speed	Pr	10	~	%
		Bigger	faster falls to	drastic			90	
		Smaller	slower downs to 0	smoother				
		When PC57 used deviation of PC5 setting will adjus position quickly, t worse.						
PC58	CSOF	Error offset comp axis: When the synchro you want to chang you can use this p Write PC58: outpo value	ensation for syn onous Capture a ge the error puls oarameter to writ ut PC56 = PC56	Pr	0	-32768 ~ 32767	Pulse unit of master axis	
	 	Read PC58: read	value = PC56.					
PC59	ECHD	E-Cam: start addr The first data of E address in the dat	ess of data array -Cam data array a array.	y: v is saved at start	Pr	100	0~	N/A
		This parameter is pre-engaged to er	only effective at ngaged!	the moment of			794	

PC60	ECMN	E-Cam: segment number (N):				
		Indicates that the E-Cam curve is divided into N segments, and the table includes N+1 data.			5	
		N ≤ (PC92 - PC59)	Pr	5	~	N/A
		$PC60 \times PC62 \le 2^{31}-1$			720	
		Note: this parameter is only writable when E-Cam stops (PC66x=0).				
PC61	ECMM	E-Cam: cycle number (M):				
		When source axis receives the pulse number P from the master axis, E-Cam rotates the M cycles defined by PC61.	Dr	1	1	N1/A
		$PC60 \times PC61 \leq PC62$	PI	I	~	IN/A
		$PC60 \times PC62 \le 2^{31}-1$			32767	
		Note: this parameter is only writable when E-Cam stops (PC66x.Bit0=0).				
PC62	ECMP	E-Cam: master axis pulse number (P):				
		Please refer to PC61.			10	
		Note: this parameter can be modified at any time. But drastic modification may cause sudden unintended acceleration.	Pr	3600	~ 2 ³⁰ -1	N/A
PC63	ECME	E-Cam: engaged segment number			0	
		Sets the segment number when E-Cam	Pr	0	~	N/A
		engages(segment number of outlined table).			719	
PC64	ECAX (∎)	E-Cam: master axis position: Position counter of the E-Cam master axis. Note: this parameter is only writable when E-Cam stops (PC66 x=0).	Pr	0	-2 ³¹ +1 ~ 2 ³¹ -1	Pulse unit of master axis

PC65	PLED1	E-Cam: initial lead pulse before engaged:				
		 When the condition to engage E-Cam (PC66z) is met, the pulse number from the master axis has to exceed the value of this parameter for the E-Cam to fully engage. The pulse from the master axis will be neglected if the initial lead pulse is not reached. Parameter with + sign: need to receive forward pulse as lead pulse. Parameter with - sign: need to receive reverse pulse as lead pulse. This parameter can be written with the virtual master axis pulse function(refer to PC83) 	Pr	0	-2 ³⁰ +1 ~ 2 ³⁰ -1	Pulse unit of master axis
PC66	ECON	E-Cam: activate E-Cam control:				
	(=)	d 0 b a u z y x x: E-Cam function x.bit2 x.bit1 x.bit0 x.Bit0 = 1: E-Cam is enabled. Note: this parameter is only writable when E-Cam stops. x.Bit1 0: when the servo is off, the alarm occurs or Pr is performing homing, the E-Cam is disengages. 1: when the servo is off or alarm occurs, the E-Cam remains engaged. When the servo switches to on, or some big alarm is cleared, E-Cam can operate directly. x Bit2	Pr	Oh	0h ~ 203F F267h	N/A
		x.Bit2				
		0: modified PC96 is effective in next engagement				
		1: modified PC96 is effective immediately				
		y: command source				
		y=0: Capture axis				

y=1: auxiliary encoder		
y=2: PR command		
y=3: time axis (1 ms)		
y=4: CN1 (pulse command)		
y=5: synchronous Capture axis (PC53)		
y=6: analog voltage command (unit: 1M pulse/s per 10V)		
z: engagement condition (Multiple choice is not allowed)		
z=0: immediately		
z=1: DI.CAM trigger		
z=2: any one position data is captured, trigger by hardware, and which is applicable to engage the working master axis.		
u: disengagement condition (+ indicates multiple conditions, but 2, 4, and 6 cannot be selected at the same time)		
u=0: remains engaged.		
u=1: disengages when DI : CAM is off.		
u=2: disengages when master axis pulse number reaches the setting value of PC67 and stops(the sign shows the direction).		
u=6: same as 2. But the speed holds when disengaged. The engaged length will exceed PC67, and it will receive Pr positioning command and stop once available.		
u=4: the master axis exceeds the positioning offset PC67(the sign shows the direction), and back to pre-engaged status which is set by PC74.		
u=8: use together with u=1,2 or 6: change the		

		status from stopped to disengaged, and the E-Cam function is disabled.				
		ba: disengaged type				
		when the disengagement condition (PC66 u = 2, 4, 6) is met, a PR(hexadecimal) is executed automatically; its number is 00~3F(00 indicates not to continue with a PR command).				
		d: E-Cam engagement status (read-only)				
		d=0: stopped				
		d=1: engaged				
		d=2: pre-engaged				
PC67	ECRD	E-Cam: pulse number upon disengagement (Refer to PC66u=2 definition)	Pr	0	-2 ³⁰ +1 ~ 2 ³⁰ -1	Pulse unit of master axis
PC68	CPCT	Compensation time for the pulse of E-Cam master Axis This parameter is to compensate the E-Cam phase to fix the phase-lag during operation. The calculation of compensation value: Compensation value(pulse)= PC68 * (E-Cam master axis pulse frequency(Kpps)-PC69) Compensation time(ms)=Compensation			-20000	
		phase(pulse)* E-Cam master axis pulse cycle(ms) Note: this compensation amount is proportional to the frequency of the master axis. If master axis pulse frequency> 0: only when master axis pulse frequency > PC69 ? 0, the phase-lag will be compensated. If master axis pulse frequency < 0: only when master axis pulse frequency< PC69 ? 0, the phase-lag will be compensated.	Pr	0	20000	μs

PC69	CPCL	E-Cam phase compensation-master axis minimum			-32767	
		frequency setting:	Pr	0	~	Kpps
		Refer to parameter PC68 description for detail.			32767	
PC70	CMAP1	E-Cam segment 1 rising-edge phase setting :				
		This parameter is to set E-Cam digital output(DO:CAM_AREA) rising-edge phase when E-Cam is engaged.	Pr	0	0~360	Degree
PC71	CMAN1	E-Cam segment 1 falling-edge phase setting:			0	
		This parameter is to set E-Cam digital output (DO:CAM_AREA) falling-edge phase when E-Cam is engaged.	Pr	0	~ 360	Degree
PC72	CMAP2	E-Cam segment 2 rising-edge phase setting:			0	
		This parameter is to set E-Cam digital output(DO:CAM_AREA2) rising-edge phase when E-Cam is engaged.	Pr	0	~ 360	Degree
PC73	CMAN2	E-Cam segment 2 falling-edge phase setting:			0	
		This parameter is to set E-Cam digital output (DO:CAM_AREA2) falling-edge phase when E-Cam is engaged.	Pr	0	~ 360	Degree
PC74	PLED2	E-Cam pre-engaged pulse number: When PC66 u=4(engagement exceeds the specified pulse number, it will be dis-engaged): When E-Cam is disengaged, it will not stop but enter pre-engaged status, the pre-engaged value is determined by this parameter. Pulse number send by mater axis must exceed this parameter to ensure the E-Cam can be engaged. If the setting pre-engaged pulse number is not reached, the master axis pulse will be neglected. For parameter sign is +: use forward pulse as lead pulse. For parameter sign is -: use reverse pulse as lead pulse.	Pr	0	-10000 0000 ~ 10000 0000	N/A

PC75	TQ1	Internal The firs rated to	l torque con st internal t orque)	nmand 1 orque command(100% indicates	т	100	-300~ 300	%
PC76	TQ2	Internal The 2n rated to	l torque con id internal t prque)	nmand 2 orque command(100% indicates	т	100	-300~ 300	%
PC77	TQ3	Internal The 3rd rated to	l torque con d internal to prque)	nmand 3 orque command(100% indicates	т	100	-300~ 300	%
PC78	CXFT	Filter Correct U Z yx: ran The ne synchro both the than th filtered the new yx Func tion Z: filter the cha Z Func tion U: value u=0: filt rate and (Note: i	setting fo ion y x ge of filter (' ew correction conous Capt e new and p e range (% out. Otherw v correction 00 Filter disabled intensity (In anges and in 0 Filter disabled intensity (In anges and in 0 Filter disabled feither z or	r synchronous capture axis %) on rate is calculated after the ure axis captures the signal. If previous correction rates are less) set in this parameter, they are wise, the error is corrected with rate. $01~5F$ If Error $\leq (1 - yx)$ %, then the filter is enabled creasing the value will slow down nprove the filter function.) 1~F Use the average times of (2 to the z power) read-only) ed, and it indicates the correction error is out of the yx set range. ed, and it indicates the correction error is within the yx set range. yx =0, the filter is invalid)	Pr	0000h	0h ~ 1F5Fh	N/A

No	Abbr.		Parameter	function and description	Mode	Default	Range	Unit
PC79	ALOP	E-Cam	alignment:	operate condition setting:				
		d c yx: rar	b a u	z y x (0~95%)				
		Wher align detec differ positi than funct the n	n DI: ALGN ment function t the curre ence (%) ion and its p the value ion is enable ew position	is triggered, the E-Cam phase on is enabled, and the system will ent E-Cam position. When the between the current E-Cam revious alignment position is less set by the parameter, the filter led. Otherwise, the system uses to do the alignment directly.				
		ух	00	01~5F				
		Fun ction	Filter disabled	If Error ≤ (1 - yx)%, then the filter is enabled			0h	
		uz: ma	ximum allo	wable correction rate (%)	Pr	0000	~	N/A
		Wher of the define	n phase alig e maximum ed as C	gnment is enabled, the limitation allowable correction rate (C) is <= (PC62/PC61) x PC79.uz%.	ΡI	0000h	5F3F 6F5Fh	
		Wher error overle phase the comp	n the alignm once ma oading. Usii e alignment process, bu plete the pha					
		ba: PR	number					
		After numb speci slave	each align pers from the fied PR. The position at					
		Note: if ba is set to 0, any shortage of pulse numbers is not stored in PR.						

No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PC8	1 ALTG	E-Cam alignment: alignment target position: When the input value is out of range, the writing is prohibited and error occurs. When the input value is within the setting range, but if changes in the value of PC62 or PC61 causes the value to exceed the range, this parameter is automatically reset to 0: PC81 new value = 0 if PC81 ≧ (PC62 /PC61)	Pr	0	0 ~ (PC62 /PC61) -1	Pulse unit of master axis
PC8	0 ALDY	E-Cam alignment: DI delay time setting: This parameter offsets the alignment target to resolve DI and sensor delays. The setting works as follows: PC80 = PD15 (DI response filter time) + delay time of sensor.	Pr	0	-25000 ~ 25000	us
		 dc: masking range (%) When DI:ALGN is triggered, the next alignment action is allowed only after the increasing pulses of the master axis are greater than the masking distance (M). M ≥ (PC62/PC61) x PC79.dc%. Note: this masking function only allows forward pulse input and does not work for reverse pulse input. 				

PC82	ALCT	E-C	am	alignment: co	ntrol switch:					
		z	У	x						
		x: E-Cam alignment control								
		its	_	_	_	_				
		Dig	3	2	1	0				
		Function	Reserved	Reverse alignment	Trigger PR immediately	Enable alignment				
				1: enable.	1: enable.	1: enable.				
				Set this bit	The E-Cam	When				
				to 1 if the	displacement	alignment				
				mark is on	value is	is				
				а	stored in the	enabled,				
				compensat	PR data	it will				
				ed motion	location which	perform			0h	
				axis, as the	is assigned by	E-Cam			On	
				position of	PC79ba.Bit.	alignment	Pr	0000h	~	N/A
		u		the mark is	Set this bit to	correction			6FF7h	
		ptic		affected	1 to trigger	if				
		scri	-	during	this PR	DI:ALGN				
		De		E-Cam	command	is				
				phase	immediately.	triggered.				
				alignment.	Otherwise,					
				I his turnation in	this PR					
				function is	should be					
				applicable	inggered and					
				control of	boforo DI:					
				reverse	ALGN					
				rotary	triggered					
				shears.	linggorou					
						<u> </u>]				
		y: fi	lter	intensity (0 -	F)					
		In	dica	ates average	of 2 ^(y) . By in	creasing the				
		Va	alue	of y, the corre	ction will be slow	er, which can				

 avoid large amounts of correction during E-Cam alignment. This can also make the operation more stable by avoiding disturbances caused by sensor noise. Note1. y=0 filter is disabled. Note 2: if the setting is too large, the alignment 		
correction cannot be performed. The recommended value is 3.		
uz: alignment forward direction allowable rate (0 - 100%)		
0 : backward alignment only		
30: forward 30%, backward 70%		
50: alignment with the shortest distance		
80: forward 80%, backward 20%		
\geq 100: forward alignment only.		

No	Abbr.		Parar	neter fu	unction	and description	Mode	Default	Range	Unit
PC83	CMSK	E-Ca u x: pu input	m maste z y ulse ma methoo	er axis x asking f d of mas	oulse m unction ster axis	asking setting of master axis / pulse				
		x	Function	Actual master axis	Virtual master axis	Description				
		0	Function disabled	Acceptable		Slave axis is driven by the actual master axis pulse.				
		1	Master axis pulse masked		Disabled	Slave axis stops operating, but the masked master pulse continues to be stored in the internal variable.	Pr	0000h	0h ~ FF7Dh	N/A
		2	Continuou s forward running	p		Command source is the virtual pulse frequency (unit: Kpps) set by				
		3	Continuously reverse running	maske	Enable	will operate continuously. To stop the virtual pulse, set x to 1.				
		4	Forward JOG			Command source is the virtual pulse number (unit: pulse) set by				
		5	Reverse JOG			PC83.uz. This function only executes the pulse number set by PC83.uz.				

		6 ~ 8	I	I	I	_				
No	Abbr.		Parar	neter fi	unction	and description	Mode	Default	Range	Unit

		x	Functi on	Actual master axis	virtuāi master axis	Description				
		9	Master axis pulse masked		Disabled	Slave axis is driven by the actual master axis pulse and the master axis pulse continues to be stored in the internal variable.				
		A	Continuous forward running	pulse		Command source is the frequency transmitted by the actual master axis (PC66.y) plus the				
		В	Continuous reverse running	ceive actual master axis	Enable	<pre>virtual pulse frequency (unit: Kpps) set by PC83.uz. This function will continue to operate. To stop the virtual pulse, set x to 9.</pre>				
		С	Forward JOG	Re		Command source is the pulse transmitted by the actual master axis				
		D	Reverse JOG			(PC66.y) plus the virtual pulse number (unit: pulse) set by PC83.uz. This function is often used for dynamic adjustment.				
No	Abbr.		Param	eter fur	nction a	and description	Mode	Default	Range	Unit

y: mas	king pulse	/ virtual pulse correction initia
ieau se	etting	
у	Function	Description
0	Function disabled	Virtual pulse number is not written to initial lead pulse(PC65).
0→1	Write the lead	Write the virtual pulse number to Initial lead pulse(PC65).
0→2	Write to	Write the virtual pulse number to
0→3	ROM	initial lead pulse(PC65) and also write to EEPROM.
0→4		Write the virtual pulse number
0→5	Plus one cycle	plus the pulse of one cycle (PC62/PC61) to initial lead pulse(PC65).
0→6	Plug one	Write the virtual pulse number
0→7	cycle and write to ROM	plus the pulse of one cycle (PC62/PC61) to initial lead pulse(PC65), and write to EEPROM.
8~15	Reserved	_
Examp numbe 1. Virtu then P	le: initial le r of one cyc al pulse nur C65= 2000 -	ead pulse PC65 = 2000; pulse le is 5000. nber is 255. Set PC83.y to 1, and + 255 = 2255.
2. Virtu then P	al pulse nur C65= 2000 ·	nber is 255. Set PC83.y to 4, and + 255 + 5000 = 7255.
3. Virtual pulse number is -2550. Set PC83.y to 1, and then PC65= 2000 - 2550 + 5000 = 4450.		
uz: pu continue operatic	ulse data ous forwar on.	when master axis performs d / reverse running or JOG
Examp	le:	207

No	Abbr.	Parameter function and	description	Mode	Default	Range	Unit
		Stop this function	uzyx = 0x0000				
		Complete and adjust for lead	uzyx = 0x0020 (write to EEPROM)				
		Reverse JOG of master axis for 18 pulses	uzyx = 0x1205				
		Forward JOG of master axis for 255 pulses	uzyx = 0xFF04				
		Continuous reverse running of master axis at 32 Kpps	uzyx = 0x2003				
		Continuous forward running of master axis at 20 Kpps	uzyx = 0x1402				
		Initiate masking of the actual pulse of master axis	uzyx = 0x0001				

PC84 C	CSDS	Motion control macro command: command parameter#4: Before executing the macro command, you should set the relevant parameters #4 in advance. The function of the parameter is determined by the macro command. Not every macro command requires this parameter.	All	0	0h ~ FFFFF FFFh	N/A
PC85 C	CSDS	Motion control macro command: command parameter#3 Before executing the macro command, you should set the relevant parameters #3 in advance. The function of the parameter is determined by the macro command. Not every macro command requires this parameter.	All	0	-2^31 ~ 2^31-1	N/A
PC86 C	CSDS	Motion control macro command: command parameter#2 Before executing the macro command, you should set the relevant parameters #2 in advance. The function of the parameter is determined by the macro command. Not every macro command requires this parameter.	All	0	-2^31 ~ 2^31-1	N/A
PC87 C	CSDS	Motion control macro command: command parameter#1 Before executing the macro command, you should set the relevant parameters #1 in advance. The function of the parameter is determined by the macro command. Not every macro command requires this parameter.	All	0	-2^31 ~ 2^31-1	N/A
No A	Abbr.	Parameter function and description	Mode	Default	Range	Unit

PC88	CSDS	Motion control macro	command: issue command /					
		read execution result:						
		Write: to issue a macr	o command (0CBAh).					
		Read: to examine the	e execution result of a macro			0h		
		command(1CBAh is re	eturned if successful).		_	•		
		If you issue command	0001:	All	0	~	N/A	
		1:1001h is returned	if successful			099Fh		
		2: F01xh is returne	ed if unsuccessful (depending					
	on the command description).							
		3: If not supported	d, the failure code F001h is					
		returned.						
		Command code						
		0005h	E-Cam disengages after en	ngaged	for one	cycle		
		Macro parameter	PC86=pulse number o	of mast	er axis			
		This function can s	et the pulse number of master axi	is (PC6	2) and pu	lse numb	ber	
		of disengaging tim	ne (PC67) as the same value	synchr	onously,	with t	he	
		disengagement condi	tion (PC66u = 2, 4, 6) and the c_y	cycle number of master axis				
		as 1 (PC61 =1), it w	vill make the E-Cam disengaged af	fter be	ing engag	ged for c	one	
		cycle.				-		
			Pulse number of master axis (P	C62) e	xceeds t	he range	,	
		Failure code	2 ³¹					
		F005h	$PC60 \times PC61 \le PC62 \le \frac{-}{PC60}$					
		Success code						
		1005h	-					
]	

PC88	CSDS		
		Command code 0006h	Create E-Cam table: rotary shear (with synchronous zone)
		General parameters	PC59=Start address (data array). PC60=7(this macro is fixed to 7 segments, 8 points.) PA06, PA07 E-Gear ratio need to be set firstly.
		Macro parameters	<pre>PC85= A(number of teeth on the motor) x C(cutting count) PC86= B (number of teeth on the cutter) PC87= 1000000 * R * V In which: R(cutting length ratio, range 0.07 ~ 2.5) = L(target cutting length)/ @(perimeter of cutter) V(speed scaling, range -20% ~ 20%)=cutting speed / feeding speed V=1.0: during cutting, the speed of cutter is the same as the feeding speed. V=1.1: during cutting, the speed of cutter increases 10%. V=0.9: during cutting, the speed of cutter decreases 10%.</pre>
		 This macro autom to the macro par PC59. The above listed it must be corr 	atically calculates the data for the E-Cam table according rameters, and stores them in the data array specified by d parameters are all related to E-Cam table calculation, ectly set before executing this macro.
		 After this macro the E-Cam table Data in the E-Ca do not execute 	o is executed, if the macro parameters have been modified, must be recreated and you must execute this macro again. am table is changed after this macro is executed; Ensure the macro when E-Cam is engaged
		5. In E-Cam applica to this macro ar to the actual a	tions, parameters (such as PC62, PC61) that are irrelevant e not listed here, you should set the parameters according pplication.
		Note: after this ma automatically.	cro is executed, the E-Cam table is not saved to EEPROM
		Failure code F061h	The E-Cam is engaged, so the E-Cam table cannot be created
		Failure code F062h	Data of PC86 exceeds the range (1 - 65535)
		Failure code F064h	Data of PC87 exceeds the range (300000~2500000)
		Failure code F066h	PC60 E-Cam segment number must be set to 7
		Failure code F067h	Data calculation error. Decrease the value of E-Gear ratio, but keep the same proportions. For example: adjust 167772160/36000 to 16777216/3600.
		Success code 1006h	_

No	Abbr.	Parameter function and description
PC88	CSDS	
		Command code 0007h Create E-Cam table: rotary shear (adjustable synchronous speed zone)
		General parametersPC59 = Start address (data array) PC60 = N(30~72) (E-Cam segment number) PA06. PA07 E-Gear ratio need to be set firstly.
		Macro parameters V = 1.0: during cutting, the speed of cutter increases 10% Macro parameters Supplementary formula: $W' = 180 + (360 / N) - (360 / R) + (Y / 2)WhenW = 0.84. L16 (W, speed is 0 in E-Cam table, W must be set to -1.$

No	Abbr.		Parameter function and description
PC88	CSDS		
		Command code 0007h	Create E-Cam table: rotary shear (adjustable synchronous speed zone)
		1. This macro aut	tomatically calculates the data for the E-Cam table according
		to the macro par	ameters, and stores them in the data array specified by PC59.
		2. The above list	ted parameters are all related to E-Cam table calculation, it
		must be correct	ly set before executing this macro.
		3. After this ma	cro is executed, if the macro parameters have been modified,
		the E-Cam table	must be recreated and you must execute this macro again.
		4. Data in the E	-Cam table is modified after this macro is executed; ensure
		5 In F-Cam appl:	ications parameters (such as PC62 PC61) that are irrelevant
		to this macro a	re not listed here. You should set the parameters according
		to the actual a	onlication
		Note: after this	s macro is executed, the E-Cam table is not saved to EEPROM
		automatically.	
		Failure code	The E-Cam is engaged, so the E-Cam table cannot be created
		F071h	
		Failure code F072h	Synchronous speed zone of PC85 exceeds the range (0 - 330)
		Failure code F073h	S-curve smoothing level of PC84.H16 exceeds the range (1 - 4)
		Failure code F074h	Degree of waiting zone of PC84.L16 exceeds the range (-1 to 170)
		Failure code F075h	Data of PC87 exceeds the range (50000 - 5000000)
		Failure code F076h	E-Cam segment number of PC60 exceeds the range (30 - 72).
		Failure code F077h	PC59 data array start position exceeds the array length.
		Failure code F078h	Data calculation error. Decrease the value of E-Gear ratio, but maintain the same proportions. For example: adjust 167772160/36000 to 16777216/3600.
		Failure code F079h	Degree of acceleration zone is too small. You can decrease the value for the waiting zone, synchronous speed zone, or S-curve level
		Failure code F07Ah	<pre>waiting zone < minimum waiting zone. Increase the value for the waiting zone(W)or decrease the value for the synchronous speed zone(Y).</pre>
		Success code 1007h	-

PC88	CSDS						
		Command code 0008h	E-Cam curve scaling (PC96) is effective once immediately				
		Macro	N/A				
		parameter					
		1. If this macro	1. If this macro is triggered, the E-Cam scaling (PC96) becomes effective once				
		immediately when	n the E-Cam is engaged.				
		2. The E-Cam sca	ling is loaded into the system by PC96 at the point when E-Cam				
		is engaged (see	the following transition 3). The scaling cannot be changed				
		when E-Cam is eng	gaged, it can only be changed after one cycle is finished which				
		is to ensure the	is to ensure the E-Cam can return to the original position without cumulative				
		error.					
			(
			1 Pre-engaged PC96				
			4 3				
		PC66d = 0	PC66d = 1				
		Stop)< Engaged)				
			Pro-ongagod				
			Stop				
		□ /疗止 → → ♪ 小 松 位 家	Lood in E-Com scaling				
		秋八口北 行 卒					
			Engaged				
		If it is posses	w to shange the E-Com goaling immediately in the application				
		there are two m	ry to change the E-cam scaling immediately in the application,				
		1 Sot DC66y Bit	$2-1$, set this bit when F_{-} can is engaged so that every change				
		to the PC96 tak	1. Set PC66x. Bit2=1: set this bit when E-Cam is engaged, so that every change				
			es effect immediatery.				
		immediately	ono. each time maciono is triggered, it will activate 1030				
		Failure code	N/Δ				
		Success code					
		10001					
No	Abbr.		Parameter function and description				

PC88	CSDS						
	0000	Command code	Calculate the error between the current position of the E-Cam				
		000Dh	and indexing coordinates for PR positioning				
		General	N/A				
		parameters					
			PC84 = dcba : uzyx (HEX)				
			yx (PK number):				
			0 0x3F, invalid when value is 0:				
			a $(PC86 \text{ format})$.				
			ba = 0; evold point				
		Macro	ba = 0. avoid point ba = 1: allowable forward rate				
		parameters	Da = 1. allowable forward fate Dc (inhibit reverse rotation)				
			dc = 0: invalid				
			dc = 1; inhibit reverse rotation				
			PC86 (avoid point or allowable forward rate)				
			avoid point cycle $0 - 100(\%)$ or allowable forward rate				
			0~100 (%)				
		When the E-Cam is	s engaged, if the motor is stopped due to Servo Off or an alarm.				
		position error w	ill occur between the actual position and the E-Cam position.				
		After the servo s	witches to on again, in order to return the E-Cam back to target				
		position, you c	an use this macro command to automatically calculate the				
		correction value	e and write the value to the specified PR for incremental				
		positioning.					
		When using this macro command:					
		1. Set PC66 x. bit1 to 1 to keep the E-Cam engaged and to keep calculating the					
		2 The indexing coordinates and the F-Cam coordinates should be at the same					
		2. The indexing	dev coordinates and the E-cam coordinates should be at the same dev coordinate moving distance (PC90) = E-Cam moving distance				
		when slave avis	operates one cycle (table(the last data-the first data)				
		3 Set the E-Cam	curve scaling PC96 to 1 0 times				
		4. Have the 0 de	gree positions in the E-Cam table point to the origin of the				
		indexing coordin	pate when E-Cam is engaged for the first time. You can achieve				
		this alignment h	by executing homing.				
		5. You can only	use this macro command for a periodic operation which always				
		starts from the	same position.				
		Notel: when usir	ng PR command, usually the value of incremental commands are				
		different, you	can use avoid point position to define forward and reverse				
		rotation timing.	To run the motor from current position to target position,				
		both forward and	reverse rotation can achieve the target due to E-Cam is running				
		periodically. Th	ne difference between forward and reverse rotation is offset				
		value. And you	can use avoid point to define forward and reverse rotation				
		timing.					
		Note2: avoid poi	nt: means impassable point when this macro PR is positioning.				
N	A b b a		Devenuetor function and description				
INO	AUDI.		Farameter function and description				

Failure code FOD1h	when this macro command is executed, E-Cam is not in engaged status.
Failure code FOD2h	PC84yx, PR number exceeds the range $(1^{\circ}0x3F)$.
Failure code F0D3h	PC86 avoid point or allowable forward rate exceeds the range $(0 - 100\%)$.
Failure code F0D5h	Position correction value does not exist. This macro command might be triggered twice.
Failure code F0D6h	When servo switches to on again, E-Cam is not engaged.
Failure code FOD7h	E-Cam table Y axis height does not equal to the total index moving distance(PC90)
Failure code FOD8h	E-Cam table scaling does not equal 1.
Failure code FOD9h	PC84.ba, PC86 data exceeds the range: 0^{1} .
Failure code FODAh	PC84.dc reverse inhibit setting exceeds the range: $0^{\sim}1$.
Failure code FODBh	The reverse inhibit function has failed. Do not use macro commands #D and #10 consecutively.

No	Abbr.	Parameter function and description					
PC88	CSDS						
		Command code 000Eh E-Cam displacement value for PR positioning					
		Command code 000Eh E-Cam displacement value for PR positioning PC84 = dcba:uzyx(HEX) yx (PR number): 0 ^ 0x37, invalid when value is 0! uz (maximum allowable alignment correction rate): 0 ^ 0x64 (%) a (triggering specified PR): a = 0: manual trigger. a = 1: immediate trigger automatically. b(position of the mark): b = 0: on non-compensated motion axis b = 1: on compensated motion axis c (DI channel): c = 0: generally DI with event write to macro command #E. c = 1: high-speed DI7 with Capture (need enable to execute PR#50 at the end point) d: must set to 0 PC85 (DI time delay compensation) : - 25000 ^ 25000, unit: µ sec PC86 (Allowable forward rotate rate): 0 ^ 100(%), Refer to macro command #D for the setting PC87 (Alignment target position X): 0 ^ (PC62/PC61)-1, unit: pulse number of master axis During E-Cam operation, if you want to quickly align the E-Cam position with the mechanical referral point, you can use the sensor to trigger the DI:EXx or use high-speed DI7 with Capture to execute this macro command. This will calculate the displacement value for the slave axis at the corresponding target position. For those applications which is not need this PR, you can set PC84, at to 0, at this time, the PR still need to be manually triggered, this macro command is just for data collection. Vene E-Cam rotates on cycle. pute number dimester axis is (PC62/PC61) of under target position (X)					

PC88	CSDS						
		Command code	Calculate the moving distance between the current and target				
		000Fh	position of the E-Cam for PR positioning				
		General	N/A				
		parameter					
			PC84 = dcba:uzyx(HEX)				
			yx(PR number of onward trip):				
			0 0x3F, invalid when value is 0!				
			uz(PR number of return trip):				
		Macro	0 0x3F, invalid when value is 0!				
		parameter	dcba: must set to 0.				
			PC86 (allowable forward rate):				
			0 100(%), refer to macro command #D for the setting.				
			PC87 (target position X):				
			0 (PC62/PC61)-1, unit: pulse number of master axis.				
		When the E-Cam 1	s engaged, this macro command calculates the moving distance				
		between the curi	rent and target position of X, and writes the value to the				
		specified PR con	mmand. Note that PR command must be executed in incremental				
		type in both onv	ward trip or returning trip.				
		Ine macro applic	he macro application: when E-Cam is operating, the master axis is stopped				
		and still engaged	a, if you want to move the slave axis to the specified position,				
		this macro comma	nu can be used to carculate the moving distance of the onward				
trip and save the value for PK incremental command.							
		the return dignl	axis is about to resume operation, another rK can be used for				
		of onword trip	accument to return to the original position. (moving distance t moving distance				
			moving distance of feturin trip = 0).				
		▲ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ion E Cam ratatos ono suslo				
		alug	se number of master axis is (PC62/PC61)				
		<					
		moving distance	e of moving distance of				
		onward trip	return trip				
		tion (
		(1)	>				
		1	Current position Target position (X)				
			(PC87)				
		Failure code	When this macro command is executed F-Cam is not in engaged				
		F0F1h	status				
		101111	, status				

Failure code F0F2h	PC84.yx , PR onward number exceeds the range: $0^{\sim}0x3F$
Failure code F0F3h	PC84.uz, PR returning number exceeds the range: 0^{0} 3F
Failure code F0F5h	PC86 allowable forward rate exceeds the range: $0^{100\%}$
Failure code F0F6h	PC87 alignment target position exceeds the range: 0~(PC62/PC61)-1
Success code 100Fh	_

No	Abbr.	Parameter function and description
PC88	CSDS	

· · · ·						
		Command code 0010h	E-Cam immediately pauses for one cycle, and resume			
		Conoral parameter				
		Mooro poromotor	DC94 must get to 0			
		After the E-Com is one	rco4 must set to 0.			
		Arter the E-cam is engaged, this matro command can immediately pause the slave				
		axis for one cycle regardless of the current E-Lam angle(one cycle means a				
		To use this macro command, the following conditions must be met:				
		2 The E-Cam curve mu	engageu.			
		line) Use this macro	command with PC89 vy acceleration time limit and PC89 u			
		reverse rotation inhi	ibit and to prevent mechanical vibration			
			ibit and to prevent mechanical vibration.			
		1	1 1 1			
		E-Cam rotates one	e cycle			
		←				
		Sla				
		∀e	E-Cam			
		po	continues to operate			
		siti	E-Cam pauses			
		° I	one cycle			
		(Y)				
		0°	360° X° X+360° Master axis phase (°)			
			Triana the mean element of #40			
			rigger the macro command #10			
		E-Cam pause distance	e= table(the end point-the start point) * PC96(the			
		activated E-Cam ratio	0).			
		This function is acc	cumulative. If the command is triggered for N times			
		consecutively, it pau	uses the E-Cam for N cycles.			
		Note that the accumul	lated pause distance cannot overflow the range (> 2 31),			
		otherwise the macro o	command will have failure code.			
		When the pause cycle 1	is complete, the slave axis continues to operate and the			
		accumulated pause dis	stance is cleared to U.			
		Failure code F101h	when this macro command is executed, the E-Cam is not			
In the engaged status						
		rallure code F102h	The E Community in formula 1: (1, 1, 1)			
		Failure code F103h	The E-Cam must operate in forward direction. Check if the E-Cam table and $PCO6 > 0$			
			the E-Cam table and PC96 > 0 .			
		Failure code F104h	Accumulated pause distance overflow (> 2 31). Do not execute this macro command consecutively			
		code 1010h	-			

No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
----	-------	------------------------------------	------	---------	-------	------

PC89	SPF1	PR special filter setting:				
		u z y x				
		yx: the acceleration time limit				
		PC89.yx = 00: invalid				
		PC89.yx = 1~7F: acceleration time limit: yx *				
		10[ms]				
		With acceleration time limit(0~1270 ms), if the				
		PR(E-Cam) command changes too drastically, it will				
		production This function can control the				
		acceleration/deceleration within the limit in any time.				
		smooth the operation, reduce the noise and extend				
		the lifetime.				
		This function is different from the general filter: the				
		traditional filter works regardless the change of			0000h	
		command, which may cause command lag and	Dr	00006		N1/A
		reduce system efficiency.	PI	00001	~	IN/A
		This function only filter when command change			107Fh	
		exceeds the limitation. When the variation value is				
		small, the filter is invalid and no lag occurs. The				
		acceleration time from 0 to 3000rpm Increasing				
		time will improve the effectiveness of filter, and also				
		improve the stability of the acceleration				
		/deceleration operation.				
		PR Speed command (mm)				
		Original command				
		Filtered command				
		$\lambda = 1$				
		Change of command slows				
		down and the two drastically and the filter commands overlap takes effect				
No	Abbr.	Parameter function and description	Mode	Default	Range	Unit

PC90	IDXS	Indexing coordinates total stroke:				
		Sets the scale of the indexing coordinates, indexing command position, and indexing feedback position.			0	
		If the value is too small, it may cause errors in the indexing coordinates. The ranges of values for	All	100000	~	Pulse
		PC90 are:		0000	100000 0000	
		PC90> (1.05 * Maximum motor speed (rpm) * (1280000/ 60000) * (PA07/PA06))> (22.4 *				
		Maximum motor speed (rpm) * (PA07/PA06))				
PC91	PCTL	Special parameter write-in function				
	(∎)	PC91 = 30: current data array value is saved in			0	
		EEPROM.	Pr	0	~	N/A
		PC91 = 999: initialize the value of data array.			65535	
		Note: when SON is ON, EEPROM write inhibit and				
DC02	1/07	Shows enor code.				
FC92	AT SZ	Total number of data arrays(read-only).	Dr	800	-32767~	Ν/Δ
		The total number of data arrays which is to place	• •	000	32767	1.077.
		CAP, CMP and E-Cam is 800.				
PC93	AYID	Data arrays read / write address			0	
	(∎)	When you read / write specified data in data array,	Pr	0	~	N/A
		you can use panel screen or use communication			700	
		software to read/write PC94/PC95.			799	
PC94	AYD0	Data arrays read / write window 1			-2 ³¹ +1	
	(∎)	Data window 1(data array [PC93++])	Pr	0	~	N/A
		When read by panel , PC93 will not add 1.			2 ³¹ -1	
		If read/write PC93 in other ways, it will add 1.			۲ - ۱	
PC95	AYD1	Data arrays read / write window 2				
	(∎)	Data window 2(data array [PC93++])			-2 ³¹ +1	
		PC93 will add 1 when you read/write by panel or	Pr	0	~	N/A
		communication software.			2 ³¹ -1	
		Note: only the panel is not writable.				
No.	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PC96	TBS	E-Cam: curve scaling:				
------	-------	--	------	-------------	---	------------------------------
		Modifying this parameter to magnify or reduce the E-Cam table without changing the values.				
		Example: when the data in the table is 0, 10, 20, 30, 40, 20, and the scaling is set to 2.000000, which is equal to the data: 0, 20, 40, 60, 80, 40, with the scaling as 1.000000. When using same master axis pulse frequency to operate E-Cam, increase this magnification will increase the E-Cam moving distance, and also enlarge the rotation speed. If negative value is used in PC96, the servo will run reversely.	Pr	100 0000	-21470 00000 ~ +2147 000000	10 ⁻⁶
		Note: this parameter can be set at any time, but the time when it becomes effective is determined by PC66.xBit.2.				
PC97	ALER	E-Cam: overall pulse error:			2 ³¹	Pulse
		During E-Cam alignment operation, it will control the pulse deviation to 0. Each time DI:ALGN is triggered, PC97 will be updated once.	Pr	0	~ -2 ³¹ -1	unit of master axis
PC98		Reserved.				
~						
PC99						
No.	Abbr.	Parameter function and description	Mode	Default	Range	Unit

PD01	DIA1 (*)	Input signal automatic ON optionu (EMG)z (LSN)y (LSP)x (SON)x=0: the open/short status of SON-SG is controlledby the external circuit of the drive.x=1:SON-SG is auto short-circuited internallywithout external wiring.y=0: the open/short status of LSP-SG is controlledby the external circuit of the drive.			0000h	
		 y=1: LSP-SG is auto short-circuited internally without external wiring. z=0: the open/short status of LSN-SG is controlled by the external circuit of the drive. 	All	0000h	~ 1111h	N/A
		z=1: LSN-SG is auto short-circuited internally without external wiring.				
		u=0: the open/short status of EMG-SG is controlled by the external circuit of the drive.				
		u=1: EMG-SG is short-circuited internally without external wiring.				
PD02	DI1	Input signal option 1:				
	(*)	To define the function of CN1-14 pin input signal.			0000h	
		In different control modes, the input signals are not exactly the same. The user can define CN1-14 input signal in different control mode by setting PD02.	All	0001h	~ 002Fh	N/A
PD03	DI2	Input signal option 2				
	(*)	To define the function of CN1-15 pin input signal.			0000h	
		CN1-15 can be assigned for any input signal, its parameter setting is same as PD02, you can refer to PD02 setting description.	All	000Dh	~ 002Fh	N/A
No.	Abbr.	Parameter function and description	Mode	Default	Range	Unit

PD04	DI3	Input signal option 3				
	(*)	To define the function of CN1-16 pin input signal.			0000h	
		CN1-16 can be assigned for any input signal, its parameter setting method is same as PD02, you can refer to PD02 setting description.	All	0003h	~ 002Fh	N/A
PD05	DI4	Input signal option 4				
	(*)	To define the function of CN1-17 pin input signal.			0000h	
		CN1-17 can be assigned for any input signal, its parameter setting method is same as PD02, you can refer to PD02 setting description.	All	0004h	~ 002Fh	N/A
PD06	DI5	Input signal option 5				
	(*)	To define the function of CN1-18 pin input signal. CN1-18 can be assigned for any input signal, its parameter setting method is same as PD02, you can refer to PD02 setting description.	All	0002h	0000h ~ 002Fh	N/A
PD07	DI6	Input signal option 6			00004	
	(*)	To define the function of CN1-19 pin input signal. CN1-19 can be assigned for any input signal, its parameter setting method is same as PD02, you can	All	000Fh	~ 002Fh	N/A
		refer to PD02 setting description.				
PD08	DI7	Input signal option 7			00006	
	(*)	To define the function of CN1-20 pin input signal.	ΔII	00126	000011	N/A
		CN1-20 can be assigned for any input signal, its parameter setting method is same as PD02, you can refer to PD02 setting description.		001211	~ 002Fh	

PD09	DI8	Input signal option 8				
	(*)	To define the function of CN1-21 pin input signal.			0000h	
		CN1-21 can be assigned for any input signal, its	All	0011h	~	N/A
		refer to PD02 setting description.			002Fh	
PD10	DO1	Output signal option 1				
	(*)	To define the function of CN1-41 pin output signal.			0000h	
		In different control modes, the output signals are not	All	0003h	~	N/A
		exactly the same. The user can define CN1-41			002Fh	
		PD10.				
PD11	DO2	Output signal option 2			0000	
	(*)	To define the function of CN1-42 pin output signal.			0000n	N. 1 / A
		CN1-42 pin can be assigned to any output signal,	All	0008h	~	N/A
		refer to PD10 setting description.			002Fh	
PD12	DO3	Output signal option 3			0000h	
	(*)	To define the function of CN1-43 pin output signal.	A 11	0007h	000011	NI/A
		CN1-43 pin can be assigned to any output signal,	All	000711	~	IN/A
		refer to PD10 setting description.			002FN	
PD13	DO4	Output signal option 4				
	(*)	To define the function of CN1-44 pin output signal.				
		Its parameter setting is the same as PD10, you can			00006	
		refer to PD10 setting description.	A 11	00056	000011	N1/A
			All	00050	~	IN/A
					002Fh	

No.	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PD14	DO5 (*)	Output signal option 5 To define the function of CN1-45 pin output signal. CN1-45 pin can be assigned to any output signal, its parameter setting is the same as PD10, you can refer to PD10 setting description.	All	0001h	0000h ~ 002Fh	N/A
PD15	DIF (*)	Digital input filter time option 0 0 x $x=0: N/A$ $x=1: 2ms$ $x=2: 4 ms$ $x=3: 6 ms$ $x=4: 8ms$ $x=5: 10 ms$	All	0002h	0000h ~ 0005h	N/A
PD16	SDI (■)	Digital input source control option This parameter can be used as DI source control switch. Each bit of this parameter determines the signal input source of 1 DI. Bit0 ~ Bit11 is correspond to DI1 ~ DI12. Bit setting shows as below: 0: input contact status is controlled by external hardware terminal. 1: input contact status is controlled by communication parameter (PD25) For DI function assignment, please refer to: DI1 ~ DI8: PD02 ~ PD09 DI9 ~ DI12: PD21 ~ PD24	All	0000h	0000h ~ 0FFFh	N/A
PD17	DOP1 (*)	The servo emergency stop mode setting when LSN or LSP signal is off. 0 0 x x: options of emergency stop x=0: stops immediately. x=1: servo decelerates to stop according to the decelerate time constant setting. Note: the decelerate time is set according to PF81(Deceleration time for auto-protection).	Pt, Pr, S	0000h	0000h ~ 0001h	N/A

No.	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PD18	DOP2	CR signal clear setting				
	(*)	0 0 x x=0: to clear the position pulse error. When CR is triggered at the rising edge, the position pulse error of drive will be cleared to 0 (Pt mode). x=1: to clear the position pulse error. When CR-SG is short-circuited, the position pulse error of drive will be kept cleaning to 0 (Pt mode) x=2: to stop the positioning function. When the CR -SG rising edge is triggered, the motor will decelerate to stop according to the deceleration time and the remaining unfinished pulses will be ignored. When CTRG-SG is short-circuited again, the current position command will be executed (Pr mode). ✓ TRG ✓ Clear remainder ✓ TRG ✓ Clear remainder ✓ Moving distance ✓ Moving distance	Pt, Pr	0000h	0000h ~ 0002h	N/A

No.	Abbr.		Para	ameter f	unctio	n and o	descr	iption		Mode	Default	Range	Unit
PD19	DOP3	A	larm code	output o	option:								
	(*)		0 0 0	x									
					F	Pin num	nber						
			x setting	CN1-	41	CN1-4	12	CN1-45	5				
				DC)	DO		DO					
			0	functi	on	functio	n	function	h				
		-		Output	an ala	rm cod	e whe	n an alar	m				
			1	Output			.e	an an alai					
		L	ata: DO f	unction	ia data	rminod	3 by D						
		N	ole. DO I	unction	is dele	minea	бу Р	DIU ~ P	U14	•			
		se	etting.										
			(Not	e) Alarm	code	Alarm	N	lame					
			CN1-41	CN1-42	CN1-45	display		lame					
						AL 00	Serial	unioation					
						AL.09	error	unication					
							Serial						
			0	0 0	A 0 0 A A	AL.0A communicat	unication				0000h		
							timeo	ut		All 0000h		000011	N/A
						AL.0E	IGBT	overheat			0000h	~ 0001h	
						AL.0F	Memo	ory error					
						AL.10	Overlo	bad 2					
			0	0	1	AL.02	Low v	oltage					
						AL.01	Over	voltage					
			0	1	1 0	AL.04	Reger	nerative					
							alarm						
			0	1	1	AL.03	Over	current					
			1	0	0		Overi						
						AL.00	Dulso	speeu					
						AL 07	comm	and					
			1	0	1	/ 12101	abnor	mal					
						41 00	Positio	on error					
						AL.08	exces	s					
							Positio	on					
			1	1	0	7.L.0D	detect	tor error 1					
			1		Ũ	AL.0C	Position	on					
							detect	for error 2					
			1	1	1	AL.11	misma	atch					
		Ν	ote 1: ple	ease ref	er to s	ection	11.1	alarm list	t for				
		d	etail descr	iption.									
		Ν	ote 2: 0: C	0FF, 1: C	N								

PD20	DOP4	Operation option when the alarm reset signal is				
	(*)	short-circuited. 0 0 0 x x=0: PWM signal is off(SERVO ON is disabled) x=1: PWM power is on(SERVO ON is enabled)	All	0000h	0000h ~ 0001h	N/A
PD21	DI9	Input signal option 9				
	(*)	To define the function of CN1-22 pin input signal. CN1-22 can be assigned for any input signal, its parameter setting method is same as PD02, you can refer to PD02 setting description.	All	0018h	0000h ~ 002Fh	N/A
PD22	DI10	Input signal option 10				
	(*)	To define the function of CN1-23 pin input signal. CN1-23 can be assigned for any input signal, its parameter setting method is same as PD02, you can refer to PD02 setting description.	All	0019h	0000h ~ 002Fh	N/A
PD23	DI11	Input signal option 11				
	(*)	To define the function of CN1-12 pin input signal. CN1-12 can be assigned for any input signal, its parameter setting method is same as PD02, you can refer to PD02 setting description.	All	0005h	0000h ~ 002Fh	N/A
PD24	DI12	Input signal option 12				
	(*)	To define the function of CN1-13 pin input signal. CN1-13 can be assigned for any input signal, its parameter setting method is same as PD02, you can refer to PD02 setting description.	All	0010h	0000h ~ 002Fh	N/A

No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PD25	ITST	Communication control DI status(HEX):				
	(■)	To determine the DI contact status(12 points in total) by bit setting method. Bit 0~11 of PD25 is correspond to DI1~DI12.				
		In binary bits: 0: DI is OFF				
		1: DI is ON.				
		PD16 controls the input source, either from external hardware terminals (DI1 ~ DI12) or communication commands(correspond to Bit 0 ~ 11 of PD25). If the bit of PD16 is 1, which means the source is communication DI (PD25), If not, the source is hardware terminal DI.				
		If the value read from PD25 is 0x0011, it indicates that DI1 and DI5 are ON eventually.				
		If the value written into PD25 is 0x0011, which means that the communication contacts DI1 and DI5 are ON; but it does not mean that the terminal signals of the DI1 and DI5 are ON, which is determined by PD16 setting value.	All	0000h	0000h ~ 0FFFh	N/A
		For the function definition of DI(DI1~DI8), you can refer to PD02~PD09.				
		For the function definition of DI(DI9~DI12), you can refer to PD21~PD24.				
		Example 1				
		If set PD16 to 0FFFh and PD25 to 0000h. then all DI1~DI12 will be controlled by the communication contacts, and all digital input contact will be turned OFF. If the external hardware terminals connect DI1~DI12 to SG is conductive, the DI signal will not be affected, but it still will be controlled by the communication contact and the DI contact DI1~DI12 still will be OFF.				

Example 2:		
The external hardware terminals DI12~DI1 are represented by bit11~bit0 in binary values.		
Bit11~bit0 indicates DI12~DI1 (from left to right).		
DI contact source control switch (PD16): 111111000000.		
The external hardware terminal status: 111100001111 (1 means ON, 0 means OFF)		
Communication control digital input contact status(PD25): 111000111000.		

No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PD26	DO6	Output signal option 6				
	(*)	To define the function of CN1-46 pin output signal. CN1-46 pin can be assigned to any output signal, its parameter setting is the same as PD10, you can refer to PD10 setting description.	All	0002h	0000h ~ 002Fh	N/A
PD27	DOD	Definition of output signal contact				
	(*)	0 : output contact is normally open(a contact).				
		1 : output contact is normally close (b contact).				
		To define the output contact of DO1~DO6 signal. bit0~bit5 of this parameter defines the contact of DO1~DO6 separately, and defines output contact a contact or b contact.	All	0020h	0000h ~ 003F	N/A

No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PD28	МСОК	Operation option of DO: MC_OK 0 0 y x x=0: output status is not retained. x=1: output status is retained.				
		y=0: disable position deviation alarm AL.1B.				
		y=1: enable position deviation alarm AL.1B.				
		Diagram 1. PR command trigger 2. DO; CMD_OK 4. DO: INP 5. DO: MC_OK PD28, X=0 output status is for retained 7. hold after first 0. hold after firs	Pr	0000h	0000h ~ 0011h	N/A
		 Command trigger: new Pr command is activated. Command 3 starts and clears signals 2, 4, 5, and 6. 				
		 CMD_OK: indicate if command 3 output is completed and the delay time (DLY) can be set. 				
		 Command output: output the profile of position command based on the acceleration / deceleration setting. 				
		 INP: indicates if positioning error of the servo drive is within PA12 setting range. 				
		5. MC_OK: command output and servo positioning are both completed, which indicate that DO.CMD_OK and DO.TPOS are both on				
		 MC_OK (retains digital output status): same as 5. Once this DO is on(7), its status is retained regardless of the signal 4 status. 				

		 7. Either signal 5 or signal 6 can be output, and the choice is specified in PD28. X. 8. Position deviation: when event 7 occurs, if signal 4 (or 5) is off, it means the position has deviated and AL.1B can be triggered. Note: set whether to enable this alarm with PD28.Y. 				
PD29	DID	Software DI A/B contact setting The corresponding DI bit is 0: If DI setting is LSP/LSN/EMG signal, it is B contact. If DI setting is not LSP/LSN/EMG signal, it is A contact. The corresponding DI bit is 1: If DI function is LSP/LSN/EMG, it is A contact. If DI function is not LSP/LSN/EMG, it is B contact. Note: if any DI is assigned to be controlled by Communication(refer to PD16), this setting is invalid.	All	0000h	0000h ~ 0FFFh	N/A
PD30	SDO (■)	 DO contact source control switch: DO Source control switch. Each bit of this parameter determines one DO signal output source. Bit0~Bit5 is correspond toDO1~DO6 separately. The bit setting is as follows: 0: output contact status is controlled by program automatically. 1: output contact status is controlled by PD31. For DO functional assignment: 1.DO1 ~ DO5: PD10 ~ PD14 2.DO6: PD26 	Turret mode	0000h	0000h ~ 003Fh	N/A

PD31	OTST	DO communication control contact status(HEX):				
	(=)	If DO is controlled by parameter, PD31 can determine DO contact status(6 contacts). Bit0~Bit5 corresponds to DO1~DO6. 0=DO contact is off. 1=DO contact is on. Note, you can refer to PD25 setting.	Turret mode	0000h	0000h ~ 003Fh	N/A
PD32	SDLY (*)	Servo ON delay time when SON is ON. This parameter is to set the delay time of SERVO ON when the SON is ON.	All	0	0 ~ 3000	msec
PD33	SFDO	Software DO register The bit0 ~ bit7 of this parameter setting controls DO signal S_DO0 ~ S_DO7 separately.	All	0000h	0000h ~ 00FFh	N/A

No	Abbr.	Р	arameter function and description	Mode	Default	Range	Unit
PD34	DIS1	DI uninte d c uzyx: uz: yx: dcba: dc: ba: Example The 1st g The 2nd	rruptible power switch function: b a u z y x The 1st group of uninterruptible power switch DI Set the 1st group of switchable DI code Set the 1st group of switchable DI code. The 2nd group of uninterruptible power switch DI. Set the 2nd group of switchable DI code. Set the 2nd group of switchable DI code. Set the 2nd group of switchable DI code. : PD34 = 161E0C1F group of switchable DI is SHOM and EV2. group of switchable DI is CTRG and EV1.	All	Oh	0h ~ 2F2F 2F2Fh	N/A
PD35 ~ PD99	-		Reserved	-	-	-	-

No	Abbr.	Paran	neter fur	ction an	d descri	ption	Mode	Default	Range	Unit	
PE01	PDEF1	Definition The deta follows:	of homin ailed par	ng ameter	definition	is as	Pr	00000000h	00000 000h~ 10FFF F3Fh	N/A	
		31~28	27~24	23~20	19~16	15~12	11~8	7~0 bit			
		BOOT	-	DLY		DEC1	ACC PATH				
		1.PATH: [oath type	(bit0~bit	()						
		0: Stop: r	noming c	omplete a	and stop						
		1~63:Aut	o: homin	g comple	ete and ex	ecute t	he spec	atied path.			
		2.ACC: s	elect acc	eleration	time 0 -	F, whic	h is cor	respond to PF4	9~PF64.		
		3.DEC1:	correspond to PF49~PF64.							nicn	
		is corresp									
		3. DLY: d	elay time	selection	n, DLY se	etting is	0~F, wh	ich is correspor	id to		
		4. PF65~ - 500-	PF80.								
		5.BOOT:	when the	e drive is	powered	on, whe	ether to	search for the o	rigin		
		0: do n	ot execu	te homing	g.		A	a		,	
		1: exec	cute hom	ing autor	natically (servo o	on for the	e first time after	power o	n).	
		6. Apart f	rom the a	above de	finitions, i	the rela	ted setti	ings for homing	also incl	ude:	
		a.PA04	homing r	node.							
		b. PA08	~PA09 s	peed sett	ing of sea	arching	for the o	origin.			
		c. PE02	: ORG_L	DEF is the	e coordina	ate of th	ne origin	and may not be	e 0. This		
			s used as	s a traver		coordii	nate.				
		Note1: ar	ter the of	rigin (sen	sor or Z)	origin h	a, the se	ervo nas to dece	ierate to		
		1 If rotur	ning to th				у а SHU 4 DATU	to 0			
		2 If rotur	. If returning to the origin is not needed, set PATH to 0.						DADO		
		= ORG_E	DEF.	e ongin i	s neeueu	, sei PP		non-zero value	anu sel	FADO	
		Note 2: if	the origi	n is found	d (sensor	or Z), a	and you	want the servo	to move	an	
		offset S a	nd define	e the coo	rdinate a	s P afte	r moving	g, then PATH =	non-zero	o and	
		set ORG	_DEF = F	P - S, and	I this abso	olute po	sition c	ommand = P.			

No	Abbr.	Param	neter fun	ction and	l descrip	tion	Mo	ode		Default		Range	Unit
PE02	PDEF1	Origin de	finition 31~16 ORG) 15~(_DEF(32b) bit bit)		Р	'n		0		(-2 ³¹ + 1) ~(2 ³¹ -1)	N/A
PE03	PDEF1	PATH#1 (The deta follows:	definition hiled para	ameters a	are define	ed as		Pr	00	0000001	h	000000 00h~FF FFFFFF h	. N/A
											-		
		(bit)	31~28	27~24	23~20	19~1	6	15~	12	11~8	7.	~4 3	3~0 VDE
		PE03	-		DLY	– ПАТ	Δ(3 [·]	- 2hit)		-	0		IPE
		1. TYPI	E. OPT			Ditt	/ (()	2011)					
			OPT option				Path TYPE						
		7	6	5	4 bit		3 ~ 0 bit						
		-	UNIT	AUTO	INS	1: S	PEED speed control.						
						2: Sl whe	ING n fir	LE p nishe	osit d.	ioning co	ontro	ol. It sto	ps
		CM	D	OVLP	INS	3: Al auto finisl	UTC mat hed.	D po tically	ositi y loa	oning co ads the n	ntrc ext	ol. It path wl	nen
		-	-	-	INS	7: Jl	JUMP, jump to the specified path.						
		-	-	AUTO	INS	8: wi path	rite :	spec	ified	d parame	ter	to spec	ified
		 2. TYP 3. INS: 4. OVL 5. AUT 6. CME 7. DLY 	E: Wr sof If II P: Allo Sp O: Exo D: Re : 0 - aft rel	nen 1, 2, or tware limits NS is set, it ow overlapp eed mode. ecuting the fer to Chap - F can use er the exec ated param	3 is execu interrupts oing of the When ove next PR p oter 7 PR co e as the def cution of the neters: PF6	executed, it can be stopped by DO: STP and rupts the previous program of the next path. Overlapping is not allowed of overlapping in position mode, DLY is inval PR path when the current PR completes PR command instruction. The delay time number (4 BIT). It is the delay of this path. The external INS is invalid! (DI String PF65~PF80).				e and ved in nvalid. s elay time			

No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PE04	PDAT1	PATH#1 data PE03 defines the property of the target point; PE04 defines the target position of PE03 or the target jumping PATH_NO. Note: PATH: Program Note2: using non-indexing positioning function. Note3: using indexing positioning function.	Pr	0	(-2 ³¹) ~ (2 ³¹ -1) (Note2) 0~4194304 (Note3)	N/A
PE05	PDEF2	PATH#2 definition Refer to description of PE03.	Pr	00000000h	00000000h ~FFFFFFFFh	N/A
PE06	PDAT2	PATH#2 data Refer to description of PE04.	Pr	0	Refer to PE04	N/A
PE07	PDEF3	PATH#3 definition Refer to description of PE03.	Pr	00000000h	00000000h ~FFFFFFFFh	N/A
PE08	PDAT3	PATH#3 data Refer to description of PE04.	Pr	0	Refer to PE04	N/A
PE09	PDEF4	PATH#4 definition Refer to description of PE03.	Pr	00000000h	00000000h ~FFFFFFFFh	N/A
PE10	PDAT4	PATH#4 data Refer to description of PE04.	Pr	0	Refer to PE04	N/A
PE11	PDEF5	PATH#5 definition Refer to description of PE03.	Pr	00000000h	00000000h ~FFFFFFFFh	N/A
PE12	PDAT5	PATH#5 data Refer to description of PE04.	Pr	0	Refer to PE04	N/A
PE13	PDEF6	PATH#6 definition Refer to description of PE03.	Pr	00000000h	00000000h ~FFFFFFFFh	N/A

PE14	PDAT6	PATH#6 data Refer to description of PE04.	Pr	0	Refer to PE04	
PE15	PDEF7	PATH#7 definition Refer to description of PE03.	Pr	00000000h	00000000h ~FFFFFFFFh	N/A
PE16	PDAT7	PATH#7 data Refer to description of PE04.	Pr	0	Refer to PE04	N/A
PE17	PDEF8	PATH#8 definition Refer to description of PE03.	Pr	00000000h	00000000h ~FFFFFFFFh	N/A
PE18	PDAT8	PATH#8 data Refer to description of PE04.	Pr	0	Refer to PE04	N/A
PE19	PDEF9	PATH#9 definition Refer to description of PE03.	Pr	00000000h	00000000h ~FFFFFFFFh	N/A

No	Abbr.	Parameter function	Mode	Default	Range	Unit
PE20	PDAT9	PAIN#9 data	Pr	0	Refer to PE04	N/A
				0000000		
PE21	PDEF10	PATH#10 definition	Pr	0000000	00000000n~	N/A
		Refer to description of PE03.		Un	FFFFFFFN	
PE22	PDAI 10	PATH#10 data	Pr	0	Refer to PE04	N/A
		Refer to description of PE04.				
PE23	PDEF11	PATH#11 definition	Pr	0000000	00000000h~	N/A
		Refer to description of PE03.		0h	FFFFFFh	
PE24	PDAT11	PATH#11 data	Pr	0	Refer to PE04	N/A
		Refer to description of PE04.				
PE25	PDEF12	PATH#12 definition	Pr	0000000	00000000h~	N/A
		Refer to description of PE03.		0h	FFFFFFFh	
PE26	PDAT12	PATH#12 data	Pr	0	Refer to PE04	N/A
		Refer to description of PE04.		_		
PE27	PDEF13	PATH#13 definition	Pr	0000000	00000000h~	N/A
		Refer to description of PE03.		0h	FFFFFFFh	
PE28	PDAT13	PATH#13 data	Pr	0	Refer to PF04	N/A
		Refer to description of PE04.		Ŭ		
PE29	PDEF14	PATH#14 definition	Pr	0000000	00000000h~	N/A
		Refer to description of PE03.		0h	FFFFFFFh	1 1/7 1
PE30	PDAT14	PATH#14 data	Dr	0	Refer to PEN/	Ν/Δ
		Refer to description of PE04.		U		
PE31	PDEF15	PATH#15 definition	Dr	0000000	00000000h~	Ν/Λ
		Refer to description of PE03.	ГІ	0h	FFFFFFFh	
PE32	PDAT15	PATH#15 data	Dr	0	Pofor to PE04	ΝΙ/Λ
		Refer to description of PE04.		0		IN/A
PE33	PDEF16	PATH#16 definition	Dr	0000000	00000000h~	
		Refer to description of PE03.	FI	0h	FFFFFFFh	IN/A
PE34	PDAT16	PATH#16 data	D.*	0	Defer to DE04	
		Refer to description of PE04.	Pr	0	Refer to PE04	N/A
PE35	PDEF17	PATH#17 definition	Du	0000000	00000000h~	
		Refer to description of PE03.	Pr	0h	FFFFFFFh	N/A
PE36	PDAT17	PATH#17 data				N1/A
		Refer to description of PE04.	Pr	U	Refer to PE04	N/A
PE37	PDEF18	PATH#18 definition	5	0000000	00000000h~	N1/A
		Refer to description of PE03.	Pr	0h	FFFFFFFh	N/A

PE38	PDAT18	PATH#18 data	Pr	0	Refer to PE04	N/A
		Refer to description of PE04.		0000000	0000000	
PE39	PDEF19	PATH#19 definition	Pr	0000000	00000000n~	N/A
		Refer to description of PE03.		UN	FFFFFFFN	
PE40	PDAI19	PATH#19 data	Pr	0	Refer to PE04	N/A
		Refer to description of PE04.		0000000		
PE41	PDEF20	PATH#20 definition	Pr	0000000	00000000h~	N/A
		Refer to description of PE03.		Un	FFFFFFN	
PE42	PDAT20	PATH#20 data	Pr	0	Refer to PE04	N/A
DE 10		Refer to description of PE04.				
PE43	PDEF21	PATH#21 definition	Pr	0000000	00000000h~	N/A
		Refer to description of PE03.		Un	FFFFFFh	
PE44	PDAI21	PATH#21 data	Pr	0	Refer to PE04	N/A
		Refer to description of PE04.				
PE45	PDEF22	PATH#22 definition	Pr	0000000	00000000h~	N/A
		Refer to description of PE03.		0h	FFFFFFFh	
PE46	PDAT22	PATH#22 data	Pr	0	Refer to PE04	N/A
		Refer to description of PE04.				
PE47	PDEF23	PATH#23 definition	Pr	0000000	00000000h~	N/A
		Refer to description of PE03.		0h	FFFFFFFh	
PE48	PDAT23	PATH#23 data	Pr	0	Refer to PE04	N/A
		Refer to description of PE04.				
PE49	PDEF24	PATH#24 definition	Pr	0000000	00000000h~	N/A
		Refer to description of PE03.		0h	FFFFFFFh	
PE50	PDAT24	PATH#24 data	Pr	0	Refer to PE04	N/A
		Refer to description of PE04.		Ŭ		
PE51	PDEF25	PATH#25 definition	Pr	0000000	00000000h~	N/A
		Refer to description of PE03.		0h	FFFFFFFh	
PE52	PDAT25	PATH#25 data	Pr	0	Refer to PE04	Ν/Δ
		Refer to description of PE04.		Ū		1 1/7 1
PE53	PDEF26	PATH#26 definition	Dr	0000000	00000000h~	N/A
		Refer to description of PE03.	11	0h	FFFFFFFh	
PE54	PDAT26	PATH#26 data	Dr	0	Refer to PE01	
		Refer to description of PE04.		0		IN/A
PE55	PDEF27	PATH#27 definition	Dr	0000000	000000000h~	
		Refer to description of PE03.		0h	FFFFFFFh	IN/A
No	Abbr	Parameter function and	Mada	Dofault	Danga	l Init
		description	WOUG		Nanye	Unit

NO	ADDI.	description	wode	Default	Kange	Unit
Na	A b b c	Parameter function and	Mada	Defectit	Deres	110.10
		Refer to description of PE03.	Pr	0h	FFFFFF	
PE73	PDEF36	PATH#36 definition	_	0000000	00000000h~	N/A
	. 271100	Refer to description of PE04.	Pr	0	Refer to PE04	
PF72	PDAT35	PATH#35 data				N/A
		Refer to description of PE03	Pr	0h	FFFFFFFh	
PF71	PDFF35	PATH#35 definition		0000000	00000000-	N/A
PE70	PDAI 34	PAIN#34 data Refer to description of PE04	Pr	0	Refer to PE04	N/A
		Refer to description of PE03.		UN	FFFFFFh	
PE69	PDEF34	PAI H#34 definition	Pr	0000000	00000000h~	N/A
		Refer to description of PE04.	Pr	0	Refer to PE04	
PF68	ΡΠΔΤ33	PATH#33 data				N/A
	י דרי וידרי	Refer to description of PE03	Pr	0000000 0h	FFFFFFFh	11//4
DEGT		DATH#33 definition		000000	0000000	ΝΙ/Λ
PE66	PDAT32	PATH#32 data	Pr	0	Refer to PE04	N/A
		Refer to description of PE03.		0h	FFFFFFFh	
PE65	PDEF32	PATH#32 definition	Dr	0000000	00000000h~	N/A
	DAISI	Refer to description of PE04.	Pr	0	Refer to PE04	
DE61	ΡΠΔΤ31	Refer to description of PE03.		Un	FFFFFFN	NI/A
PE63	PDEF31	PAI H#31 definition	Pr	0000000	00000000h~	N/A
		Reter to description of PE04.		0000000	00000000	
PE62	PDAT30	PATH#30 data	Pr	0	Refer to PE04	N/A
		Refer to description of PE03.		0h	FFFFFFFh	IN/A
PE61	PDEF30	PATH#30 definition	Dr	0000000	00000000h~	NI/A
		Refer to description of PE04.	Pr	0	Refer to PE04	N/A
PF60	PDAT29	PATH#29 data				
F L 39		Refer to description of PE03	Pr	0000000 0h	FFFFFFF	N/A
		Relef to description of PE04.		000000	0000000	
PE58	PDAT28	PATH#28 data	Pr	0	Refer to PE04	N/A
		Refer to description of PE03.	PI	0h	FFFFFFFh	IN/A
PE57	PDEF28	PATH#28 definition	Dr	0000000	00000000h~	
		Refer to description of PE04.	Pr	0	Refer to PE04	N/A
PE56	PDAT27	PATH#27 data	_			

PE74	PDAT36	PATH#36 data	Pr	0	Refer to PE04	N/A
PE75	PDEF37	PATH#37 definition	Pr	0000000	00000000h~	N/A
		Reter to description of PE03.		0h	FFFFFFFh	
PE76	PDAT37	PATH#37 data	Pr	0	Refer to PE04	N/A
		Refer to description of PE04.				
PE77	PDEF38	PATH#38 definition	Pr	0000000	00000000h~	N/A
		Refer to description of PE03.		0h	FFFFFFFh	
PE78	PDAT38	PATH#38 data	Pr	0	Refer to PE04	N/A
		Refer to description of PE04.		Ĵ		
PE79	PDEF39	PATH#39 definition	Pr	0000000	00000000h~	N/A
		Refer to description of PE03.		0h	FFFFFFFh	
PE80	PDAT39	PATH#39 data	Dr	0	Refer to PE0/	N/A
		Refer to description of PE04.	11	0		
PE81	PDEF40	PATH#40 definition	Dr	0000000	00000000h~	N/A
		Refer to description of PE03.	ΓI	0h	FFFFFFFh	
PE82	PDAT40	PATH#40 data	D.,	0	Defer to DE04	N/A
		Refer to description of PE04.	Pſ	0	Refer to PE04	
PE83	PDEF41	PATH#41 definition	Γ.	0000000	00000000h~	N/A
		Refer to description of PE03.	Pr	0h	FFFFFFFh	
PE84	PDAT41	PATH#41 data	1			N/A
		Refer to description of PE04.	Pr	0	Refer to PE04	
PE85	PDEF42	PATH#42 definition		0000000	00000000h~	N/A
		Refer to description of PE03.	Pr	0h	FFFFFFFh	
PE86	PDAT42	PATH#42 data	_			N/A
		Refer to description of PE04.	Pr	0	Refer to PE04	
PE87	PDEF43	PATH#43 definition		0000000	00000000h~	N/A
		Refer to description of PE03.	Pr	0h	FFFFFFFh	
PE88	PDAT43	PATH#43 data	_			N/A
		Refer to description of PE04.	Pr	0	Refer to PE04	
PE89	PDEF44	PATH#44 definition		0000000	00000000h~	N/A
		Refer to description of PE03.	Pr	0h	FFFFFFFh	
PE90	PDAT44	PATH#44 data				N/A
		Refer to description of PE04.	Pr	0	Refer to PE04	
PE91	PDEF45	PATH#45 definition				N/A
		Refer to description of PE03.	Pr	0000000 0h	00000000h~ FFFFFFFh	

No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PE92	PDAT45	PATH#45 data	Dr	0	Pofor to DE04	N/A
		Refer to description of PE04.	ΓI	0		
PE93	PDEF46	PATH#46 definition	Dr	0000000	00000000h~	N/A
		Refer to description of PE03.	ГІ	0h	FFFFFFFh	
PE94	PDAT46	PATH#46 data	Dr	0	Refer to PE01	N/A
		Refer to description of PE04.	11	0		
PE95	PDEF47	PATH#47 definition	Dr	0000000	00000000h~	N/A
		Refer to description of PE03.	ГІ	0h	FFFFFFFh	
PE96	PDAT47	PATH#47 data	Dr	0	Pofor to PE04	N/A
		Refer to description of PE04.	ГІ	0		
PE97	PDEF48	PATH#48 definition	Dr	0000000	00000000h~	N/A
		Refer to description of PE03.	ГІ	0h	FFFFFFFh	
PE98	PDAT48	PATH#48 data	Dr	0	Pofor to DE04	N/A
		Refer to description of PE04.	FI	0		
PE99	-	Reserved	-	-	-	-

No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PF01	PDEF49	PATH#49 definition	Pr	0000000	00000000h~	N/A
PF02	ρηδτίο	PATH#19 data		Un	FFFFFFFN	
1102		Refer to description of PE04.	Pr	0	Refer to PE04	N/A
PF03	PDEF50	PATH#50 definition	Da	0000000	00000000h~	
		Refer to description of PE03.	Pr	0h	FFFFFFFh	N/A
PF04	PDAT50	PATH#50 data	Dr	0	Refer to PE0/	Ν/Δ
		Refer to description of PE04.		0		
PF05	PDEF51	PATH#51 definition	Pr	0000000	00000000h~	N/A
		Refer to description of PE03.		0h	FFFFFFFh	1.0/7.
PF06	PDAT51	PATH#51 data	Pr	0	Refer to PE04	N/A
		Refer to description of PE04.				
PF07	PDEF52	PATH#52 definition	Pr	0000000	00000000h~	N/A
		Refer to description of PE03.		0h	FFFFFFFh	
PF08	PDAT52	PATH#52 data Refer to description of PE04.	Pr	0	Refer to PE04	N/A
PF09	PDEF53	PATH#53 definition	D	0000000	00000000h~	
		Refer to description of PE03.	Pr	0h	FFFFFFFh	N/A
PF10	PDAT53	PATH#53 data	Dr	0	Pofor to DE04	ΝΙ/Λ
		Refer to description of PE04.	ГІ	0		IN/A
PF11	PDEF54	PATH#54 definition	Pr	0000000	00000000h~	N/A
		Refer to description of PE03.		0h	FFFFFFFh	1.1/7.1
PF12	PDAT54	PATH#54 data Refer to description of PE04	Pr	0	Refer to PE04	N/A
PF13	PDEF55	PATH#55 definition		0000000	00000000h~	
		Refer to description of PE03.	Pr	0h	FFFFFFFh	N/A
PF14	PDAT55	PATH#55 data	Dr	0		
		Refer to description of PE04.	Pr	0	Refer to PE04	N/A
PF15	PDEF56	PATH#56 definition	Dr	0000000	00000000h~	
		Refer to description of PE03.	FI	0h	FFFFFFFh	IN/A
PF16	PDAT56	PATH#56 data	Pr	0	Refer to PE04	N/A
		Refer to description of PE04.		Ŭ		1 1/7 1
PF17	PDEF57	PATH#57 definition Refer to description of PE03.	Pr	0000000 0h	00000000h~ FFFFFFFh	N/A

No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PF18	PDAT57	PATH#57 data	Dr	0	Refer to PE0/	Ν/Δ
		Refer to description of PE04.		0		
PF19	PDEF58	PATH#58 definition	Dr	0000000	00000000h~	Ν/Δ
		Refer to description of PE03.		0h	FFFFFFFh	
PF20	PDAT58	PATH#58 data	Dr	0	Refer to PE0/	Ν/Δ
		Refer to description of PE04.		0		
PF21	PDEF59	PATH#59 definition	Dr	0000000	00000000h~	Ν/Δ
		Refer to description of PE03.		0h	FFFFFFFh	
PF22	PDAT59	PATH#59 data	Dr	0	Refer to PE0/	Ν/Δ
		Refer to description of PE04.		0		
PF23	PDEF60	PATH#60 definition	Dr	0000000	00000000h~	Ν/Δ
		Refer to description of PE03.		0h	FFFFFFFh	
PF24	PDAT60	PATH#60 data	Dr	0	Refer to PE0/	Ν/Δ
		Refer to description of PE04.		0		
PF25	PDEF61	PATH#61 definition	Dr	0000000	00000000h~	Ν/Δ
		Refer to description of PE03.		0h	FFFFFFFh	
PF26	PDAT61	PATH#61 data	Pr	0	Refer to PE04	Ν/Δ
		Refer to description of PE04.		0		1 1/7 1
PF27	PDEF62	PATH#62 definition	Dr	0000000	00000000h~	Ν/Δ
		Refer to description of PE03.		0h	FFFFFFFh	
PF28	PDAT62	PATH#62 data	Dr	0	Refer to PE0/	Ν/Δ
		Refer to description of PE04.		0		
PF29	PDEF63	PATH#63 definition	Dr	0000000	00000000h~	Ν/Δ
		Refer to description of PE03.		0h	FFFFFFFh	
PF30	PDAT63	PATH#63 data	Dr	0	Refer to PE0/	Ν/Δ
		Refer to description of PE04.		0		
PF31	-	Reserved	-	-	-	-
PF32	-	Reserved	-	-	-	-

No.	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PF33	POV1	Speed setting of internal position command 1	Pr	50	1~6000	rpm, mm/s
PF34	POV2	Speed setting of internal position command 2	Pr	10	1~6000	rpm, mm/s
PF35	POV3	Speed setting of internal position command 3	Pr	200	1~6000	rpm, mm/s
PF36	POV4	Speed setting of internal position command 4	Pr	300	1~6000	rpm, mm/s
PF37	POV5	Speed setting of internal position command 5	Pr	500	1~6000	rpm, mm/s
PF38	POV6	Speed setting of internal position command 6	Pr	800	1~6000	rpm, mm/s
PF39	POV7	Speed setting of internal position command 7	Pr	1000	1~6000	rpm, mm/s
PF40	POV8	Speed setting of internal position command 8	Pr	1200	1~6000	rpm, mm/s
PF41	POV9	Speed setting of internal position command 9	Pr	1500	1~6000	rpm, mm/s
PF42	POV10	Speed setting of internal position command 10	Pr	1800	1~6000	rpm, mm/s
PF43	POV11	Speed setting of internal position command 11	Pr	2000	1~6000	rpm, mm/s
PF44	POV12	Speed setting of internal position command 12	Pr	2200	1~6000	rpm, mm/s
PF45	POV13	Speed setting of internal position command 13	Pr	2400	1~6000	rpm, mm/s
PF46	POV14	Speed setting of internal position command 14	Pr	2700	1~6000	rpm, mm/s
PF47	POV15	Speed setting of internal position command 15	Pr	3000	1~6000	rpm, mm/s
PF48	POV16	Speed setting of internal position command 16	Pr	3000	1~6000	rpm, mm/s
PF49	POA1	Acceleration/deceleration time of internal position command 1. To set the acceleration/deceleration time in Pr mode, which is time needed from 0 to motor rated speed.	Pr	200	1~65550	ms

No	Abbr.	Parameter function and	Mode	Default	Range	Unit
		description				
PF50	POA2	Acceleration/deceleration time of				
		internal position command 2	Pr	200	1~65550	ms
		Refer to description of PF49.				
PF51	POA3	Acceleration/deceleration time of				
		internal position command 3	Pr	300	1~65550	ms
		Refer to description of PF49.				
PF52	POA4	Acceleration/deceleration time of				
		internal position command 4	Pr	500	1~65550	ms
		Refer to description of PF49.				
PF53	POV5	Acceleration/deceleration time of				
		internal position command 5	Pr	600	1~65550	ms
		Refer to description of PF49.				
PF54	POV6	Acceleration/deceleration time of				
		internal position command 6	Pr	800	1~65550	ms
		Refer to description of PF49.				
PF55	POV7	Acceleration/deceleration time of				
		internal position command 7	Pr	900	1~65550	ms
		Refer to description of PF49.				
PF56	POV8	Acceleration/deceleration time of				
		internal position command 8	Pr	1000	1~65550	ms
		Refer to description of PF49.				
PF57	POV9	Acceleration/deceleration time of				
		internal position command 9	Pr	1200	1~65550	ms
		Refer to description of PF49.				
PF58	POV10	Acceleration/deceleration time of				
		internal position command 10	Pr	1400	1~65550	ms
		Refer to description of PF49.				
PF59	POV11	Acceleration/deceleration time of				
		internal position command 11	Pr	1600	1~65550	ms
		Refer to description of PF49.				
PF60	POV12	Acceleration/deceleration time of				
		internal position command 12	Pr	2000	1~65550	ms
		Refer to description of PF49.				
PF61	POV13	Acceleration/deceleration time of				
		internal position command 13	Pr	2500	1~65550	ms
		Refer to description of PF49.				

PF62	POV14	Acceleration/deceleration time of				
		internal position command 14	Pr	3000	1~65550	ms
		Refer to description of PF49.				
PF63	POV15	Acceleration/deceleration time of				
		internal position command 15	Pr	4000	1~65550	ms
		Refer to description of PF49.				
PF64	POV16	Acceleration/deceleration time of				
		internal position command 16	Pr	5000	1~65550	ms
		Refer to description of PF49.				
PF65	DLY1	Delay time 1 after position				
		reached	Pr	0	0~32767	ms
		To set the delay time 1 in Pr		Ŭ	0 02101	mo
		mode.				
PF66	DLY2	Delay time 2 after position				
		reached	Pr	100	0~32767	ms
		Refer to description of PF65.				
PF67	DLY3	Delay time 3 after position				
		reached	Pr	200	0~32767	ms
		Refer to description of PF65.				
PF68	DLY4	Delay time 4 after position	_			
		reached	Pr	300	0~32767	ms
		Refer to description of PF65.				
PF69	DLY5	Delay time 5 after position	_			
		reached	Pr	500	0~32767	ms
DE70	DUVO	Refer to description of PF65.				
PF70	DLY6	Delay time 6 after position		000	0 00707	
		reached	Pr	600	0~32767	ms
		Refer to description of PF65.				
PF/1	DLY/	Delay time 7 after position	Du	000	0 00707	
		reached	Pr	800	0~32767	ms
		Relef to description of PF65.				
PF/2	DLIB	Delay time 8 after position	D۴	1000	0 22767	
		Poter to description of PE65	PI	1000	0~32767	ms
DE72		Refer to description of PP05.				
FF13	DLIS	reached				
		Refer to description of PE65	Pr	1200	0~32767	ms
				1		

PF74	DLY10	Delay time 10 after position reached	Pr	1500	0~32767	ms
		Refer to description of PF65.				
PF75	DLY11	Delay time 11 after position				
		reached	Pr	2000	0~32767	ms
		Refer to description of PF65.				
PF76	DLY12	Delay time 12 after position				
		reached	Pr	2300	0~32767	ms
		Refer to description of PF65.				
PF77	DLY13	Delay time 13 after position				
		reached	Pr	2500	0~32767	ms
		Refer to description of PF65.				
PF78	DLY14	Delay time 14 after position				
		reached	Pr	3000	0~32767	ms
		Refer to description of PF65.				
PF79	DLY15	Delay time 15 after position				
		reached	Pr	4000	0~32767	ms
		Refer to description of PF65.				
PF80	DLY16	Delay time 16 after position				
		reached	Pr	5000	0~32767	ms
		Refer to description of PF65.				

No	Abbr.	Paran	neter fur descrip	nction ar tion	nd	Mode	De	efault	Ra	inge	Unit
PF81	PDEC	Decelerat auto-prote	ion ection	time	for	Pr,Pt,	000	00000h	0 ~ FF	F0FFFFh	N/A
		The never				0,1		(h a.)	-iob ovo l		
		and X:	neter sei	ting is ai	vided i	nto 8 p	ans	(nex), wi	nich are l	Ј, С, В, А,	/V, ∠, Y,
		Including:									
		1. Decel	eration ti	me wher	the a	uto-pro	otecti	ion funct	ion is ena	abled	
		Digit	D	С	В	Å	4	W	Z	Y	X
		functi	STP	OVT	СТО	Re	ser	SNL	SPL	NL	PL
		on				Ve	ed				
		Rang e	0~F	0~F	0~F	-		0~F	0~F	0~F	0~F
		2. The d	efinition (of the fur	nction a	code is	as f	ollows			
		STP	: the sec	ond dece	eleratio	on time	of h	omina. [DI STOP	deceleratio	n time
		СТО	: the dec	eleration	n time v	when c	omn	nunicatio	on timeou	t or ABS	
		comr	nunicatic	n alarm	occurs						
		SNL alarm	: the dec n occurs.	eleration	time v	vhen th	ne sc	oftware r	egative I	imit reache	s and
		SPL : alarm	the dece occurs.	eleration	time w	hen th	e sof	ftware po	ositive lin	nit reaches	and
		NL : 1 occui	the decel rs.	eration t	ime wh	nen the	LSN	V reverse	e limit rea	aches and	alarm
		PL : t occu	he decel rs.	eration ti	ime wh	ien the	LSF	P positive	e limit rea	iches and a	alarm
		OVT:	the dece	eleration	time w	hen m	otor	overhea	ts.		
		0∼F is use	ed to ind	ex the de	ecelera	tion tin	ne of	f PF49~l	PF64.		
		For exam value of F	ple, if X PF58.	is set to	A, the	decel	eratio	on time	of PL is o	determinec	by the

No	Abbr.	Para	meter funct descriptio	ion and n	Mode	Default	Range	Unit			
PF82	PRCM	Pr com	mand trigger	register	Pr	0	0~~1000	N/A			
	(∎)										
			Set value		Function						
			0	start homin	start homing						
			1 ~ 63	To execute the same a	To execute the specified PR procedure, which is the same as using DI:CTRG+POSn						
			64 ~ 9999	You canno exceeds the	You cannot set to 64 ~ 9999 as the value exceeds the valid range.						
			1000	to execute stop command which is the same as DI:STOP.							
		When re	ading PF82,	L							
		1.if the	e command i	s incomplete	, the di	rive reads th	e current command(1 - 99).			
		2.lf the	e command i	s complete,	the driv	ve reads the	current command +	10000.			
		3.If th reache	e command ed, the drive	is complete reads the cu	, and I irrent c	DO:TPOS is ommand +2	on, and motor pos	ition is			
		4.Com	nmands trigg	ered by DI a	re also	applicable.					
		Example	e: if set to 3,	which means	s PR#3	is triggered					
		1. If th	e read value	is 3, it mear	ns PR#	3 is incompl	ete.				
		2.If the not rea	e read value ached the tai	is 10003, it rget position	means yet.	PR#3 is co	mpleted, but the mo	tor has			
		3.If th reache	e read value ed the target	e is 20003, position.	it mea	ns PR#3 is	completed and the	motor			

No	Abbr.	Parameter fund	ction and description	Mode	Default	Range	Unit			
PF83	EVON	PR number trigge	ered by event rising edge	Pr	0000h	0000h~DDDDh	N/A			
		Parameter settin	g: by UZYX.							
		This parameter is	s to define the executing	PR nun	nber whe	en EVx is on.				
		X=0	no action when EV1 is o	on						
		X=1~D	execute PR# 51 ~ 63 w	hen EV	1 is on					
		Y=0	no action when EV2 is o	on						
		Y=1~D	execute PR# 51~ 63 wh	nen EV2	2 is on					
		Z=0	no action when EV3 is o	on						
		Z=1~D	execute PR# 51 ~63 wh	nen EV	3 is on					
		U=0	no action when EV4 is o	on						
		U=1~D	execute PR# 51~ 63 wh	nen EV	4 is on					
PF84	EVOF	PR number trigg	ered by falling edge	Pr	0000h	0000h~DDDDh	N/A			
		Parameter settin	g: UZYX							
		This parameter is	to define the executing PR number when EVx is off.							
		X=0	no action when EV1 is o	off						
		X=1~D	execute PR# 51 ~ 63 wh	nen EV	1 is off					
		Y=0	no action when EV2 is o	off						
		Y=1~D	execute PR# 51 ~ 63 wh	nen EV	2 is off					
		Z=0	no action when EV3 is o	off						
		Z=1~D	execute PR# 51~ 63 wh	en EV3	s is off					
		U=0	no action when EV4 is o	off						
		U=1~D	execute PR# 51 ~ 63 wh	nen EV	4 is off					
PF85	PMEM	PATH#1 to PATH	#2 volatile setting:							
	(∎)	0 0 y x								
		x=0: PATH#1 dat	ta is non-volatile			0000h				
		x=1: PATH#1 dat	ta is volatile			0000n				
		y=0: PATH#2 dat	ta is non-volatile	All	0000h	~	N/A			
		y=1: PATH#2 dat	ta is volatile			0011h				
		The others are re	eserved.			001111				
		i nis parameter	is used to write new							
			continuously though							
		communication.								

No	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PF86	SWLP	Positive software limit:				
		In PR mode, if the motor moves in the positive direction and its position command pulse number exceeds the value of PF86, AL14 will occur.				
		(Note: position command is before E-Gear ratio).	Pr,	2 ³¹ -1	-2 ³¹ +1 ~	pulse
		In PT mode of absolute system, if the motor moves in positive direction and its feedback position pulse number exceeds the value of PF86, AL14 will occur.	Pt		2 ³¹ -1	
		(Note: feedback position pulse number is position feedback value before E-Gear ratio).				
PF87	SWLN	Negative software limit:				
		In PR mode, if the motor moves in the negative direction and its position command pulse number exceeds the value of PF87, AL15 will occur.		Pr, -2 ³¹ +1	-2 ³¹ +1 ~	
		(Note: position command is before E-Gear ratio).	Pr,			pulse
		In PT mode of absolute system, if the motor moves in the negative direction and its feedback position pulse number exceeds the value of PF87, AL15 will occur.			2 ³¹ -1	
		(Note: feedback position pulse number is the feedback position value before E-Gear ratio).				
PF88	BLSP	Backlash compensation value setting(before	Pr,	0	-32767	nuleo
	(*)	E-Gear)	Pt	0	~32767	Puise
PF89	BLST	Backlash compensation time constant setting	Pr, Pt	0	0 ~ 10000	0.1ms

PF90	BLSF	Backlash compensation option				
		Setting value:	Dr			
		0: disable.	Pt	0	0 ~ 2	N/A
		1: forward direction compensation .				
		2: reverse direction compensation				
PF91						
~	-	Reserved	-	-	-	-
PF99						
No.	Abbr.	Parameter function and description	Mode	Default	Range	Unit
------	-------	---	------	---------	-------	------
PL01		Motor type				
		0: Shihlin servo motor(PL group parameter is invalid)	All	0	0~2	N/A
		1: permanent-magnet synchronous linear motor (LM)				
		2: SPM rotary motor (for internal test only)				
PL02		Motor parameter automatic identification function and current response setting.				
		0: disable motor parameter automatic identification function.				
		1: enable motor parameter automatic identification function(high response)				
		 enable motor parameter automatic identification function(middle response) 	All	0	0~6	N/A
		 enable motor parameter automatic identification function(low response) 				
		4: enable motor parameter manually setting function(high response)				
		5: enable motor parameter manually setting function(middle response)				
		6: enable motor parameter manually setting function(low response)				
PL03		Motor parameter confirmation:				
		0: motor parameter is invalid.				
		1: motor parameter is valid.				
		1: if Servo is On and PL03=0, AL53 occurs.	All	0	0 ~ 1	N/A
		 PL03 must set to 1 before SERVO is turning ON, regardless parameter identification in automatically or manually type. 				

PL04	Encoder type setting:				
	u z y x				
	x: encoder signal type option				
	x=0: square wave signal(CN2L)				
	(u bit can set 0 or 1)				
	x=1: Endat 2.2 communication signal(CN2)				
	(When use linear motor and Endat 2.2 Linear scale , u bit can only set to 1)				
	u bit=0: output CN2L A/B/Z signal				
	u bit=1: output virtual ABZ signal according to Endat 2.2.				
	y: Hall sensor setting				
	y=0: no Hall sensor				
	y=1: with Hall sensor			Oh	
	Note1: if you select "no Hall sensor", the motor moves slowly to detect the magnetic pole when the servo is on for the first time.	All	100h	0n ~	N/A
	Note2: It cannot operate the Z-axis without spring or balance treatment.			13111	
	z: AB phase pulse filter setting				
	z=0: turn off the filter.				
	z=1: applicable for 16MPPS pulse feedback.				
	z=2: applicable for 8MPPS pulse feedback.				
	z=3: applicable for 3MPPS pulse feedback.				
	u: AB phase(LA/LB) pulse output type setting.				
	u=0: directly output LA/LB/LZ of Linear scale				
	u=1: output pulse according to PA14 and PA39 setting.(output LZ when electrical angle is 0°)				
	Example:				
	Suppose PA39 is set to 0000h and PA14 is set to 1024, the number of pulses output by the linear motor per PL42 length is 1024 (pulse/PL42[mm]),				

	The number of pulses output per revolution of the				
	Example:				
	Suppose PA39 is set to 0100h and PA14 is set to 512, The number of pulses output by the linea motor per PL42 length is (PL42 * 100000 / PL05) 512 (pulse/PL42[mm]), The number of pulses outpu per revolution of the rotary motor is the number o pulses per revolution / 512 (pulse/rev).				
PL05	Encoder resolution: If PL01=1, PL05 unit is 10 ⁻³ um/pulse. If PL01=2, PL05 unit is pulse/rev.	All	1000	1 ~ 2 ²⁹ -1	Refer to PL05
PL06	Reserved	-	-	-	-

No.	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PL07		Motor UVW and Hall sensor phase sequences: 0 0 y x x: the relation of UVW phase sequence and encoder feedback signal x=0: phase sequence is consistent. X=0 Uphase V phase W phase Three-phase back electromotive force of the motor Encoder A phase Encoder B phase Encoder B phase x=1 phase sequence is reversed.	AII	Oh	0h ~ 11h	N/A

PL07 y: the relation of motor UVW phase sequence and Hall sensor y=0: phase sequence is consistent.	ge Unit
Y = 0 Three-phase back electromotive force of the motor U phase Hall sensor V phase Hall sensor	h - N/A h

		Y =1 Uphase W phase V phase Three-phase back electromotive force of the motor Image: Comparison of the motor Image: Comparison of the motor Hall sensor Image: Comparison of the motor Image: Comparison of the motor Image: Comparison of the motor Hall sensor Image: Comparison of the motor Image: Comparison of the motor Image: Comparison of the motor Hall sensor Image: Comparison of the motor Image: Comparison of the motor Image: Comparison of the motor Hall sensor Image: Comparison of the motor Image: Comparison of the motor Image: Comparison of the motor Hall sensor Image: Comparison of the motor Image: Comparison of the motor Image: Comparison of the motor Hall sensor Image: Comparison of the motor Image: Comparison of the motor Image: Comparison of the motor Hall sensor Image: Comparison of the motor Image: Comparison of the motor Image: Comparison of the motor				
No. PL08	Abbr.	Parameter function and description Hall sensor offset angle:	Mode	Default	Range	Unit
		When the Hall sensor makes hysteresis due to different motion directions of the motor, the U phase zero point of the Hall sensor will be based on the central angle of the hysteresis. (For the description of hysteresis, refer to the diagram of PL09).	All	0	0 ~ 3600	0.1° (Electr ical angle)

PL09	Hall sensor hysteresis width:				
	Hysteresis width is as follows:	All	0	0 ~ 3600	0.1° (Electr ical angle)
PL10	 Electrical angle correction function: x: Z phase correction function x=1: add electrical angle which is trigged by z phase signal with PL11 offset angle. y: check Hall sensor move distance y=1: if the deviation between commutation angel detected by Hall sensor and actual electrical angle exceeds 90 degree, AL.55 occurs. 	All	0x00	0h ~ 11h	N/A
PL11	Z phase signal offset angle: When PL10.xBit=1, the electrical angle will change to PL11 setting when z phase signal is triggered for the first time.	All	0	0 ~ 3600	0.1° (Electr ical angle)

PL12	Current setting for initial magnetic field detection:				
	 If PL04.y=0, the servo drive will automatically detect the motor magnetic field when the servo is On for the first time, the detection current is PL12 setting value and the setting is as follows: 1. When the friction between the motor and the mechanical parts is too large, magnetic field detection error may occur which triggers AL.52. Increasing the setting value of PL12 can reduce the occurrence of AL.52. 2. When the initial magnetic field detection vibration of the motor is too large, you can reduce the setting value of PL12 to reduce the detection motion. **The initial magnetic field current detection cannot used for the Z-axis without spring or balance treatment. 	AII	100	0 ~ 300	%
PL13	 Initial magnetic field detection condition: 0 0 y x x: minimum move angle of magnetic field During initial magnetic field detection, the move angle of motor magnetic field should exceed x * 0.25 degree. y: motor magnetic field recheck move angle During initial magnetic field detection, motor magnetic field move angle is y * 5degree. 1.When y <= 2, the onward and backward move angle is 10°. 2.Only when x and y conditions are both met at the same time, the motor magnetic field detection is completed successfully. 3.If either x or y cannot meet, it will detect again in 	AII	0x0064	0h ~ FFh	N/A

	different angle	When the number of detection				
	umerent angle.					
	failures reaches	4 times, AL.52 will occur.				
PL14						
~		Reserved	-	-	-	-
PL15						

No.	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PL16		Current loop proportional gain (kp): When reading PL16, it displays the proportional gain value of auto-adjustment.				
		This parameter can be manually adjusted base on user's requirement. Increasing the value of PL16 can enhance the current loop bandwidth, and it may cause servo unstable and vibration.	All	0	0~999 9999	N/A
		Note: when PL01=0, this parameter is invalid.				
PL17		Current loop integral gain (ki): When reading PL17, it displays the integral gain value of auto-adjustment. It can be manually adjusted base on the user's requirement. Decreasing the value of PL17 can reduce the settling time of current loop, and it may cause servo unstable and vibration. Note: when PL01=0, this parameter is invalid.	All	0	0~99 99999	N/A
PL18		Current loop gain magnification: When PL18=0, the actual current loop gain is PL16,PL17. When PL18 is not 0, the actual current loop gain is as follows: Current loop gain Kp = PL16 * PL18[%] Current integral gain Ki = PL17 * PL18[%]	All	0	0~ 999	%
PL19		Reserved.	-	-	-	-

No.	Abbr.		Parameter functio	n and description	Mode	e Default	Range	Unit
PL20		Ove	rload increase gain:					
			Load ratio	Operating time				
			0%	-12.00sec * PL-21				
			20%	-12.30sec * PL-21				
			40%	-13.60sec * PL-21				
			60%	-16.30sec * PL-21				
			80%	-22.60sec * PL-21				
			100%	N/A				
			120%	263.8sec * PL-20				
			140%	35.20sec * PL-20				
			160%	17.60sec * PL-20				
			180%	11.20sec * PL-20				
			200%	8.00sec * PL-20				
			220%	6.10sec * PL-20				
			240%	4.80sec * PL-20				
			260%	3.90sec * PL-20			15	
			280%	3.30sec * PL-20		100		0/
			300%	2.80sec * PL-20	All	100	~	70
			320%	2.50sec * PL-20			600	
			340%	2.20sec * PL-20				
			360%	2.00sec * PL-20				
			380%	1.80sec * PL-20				
			400%	1.60sec * PL-20				
			420%	1.40sec * PL-20				
			440%	1.30sec * PL-20				
			460%	1.20sec * PL-20				
			480%	1.10sec * PL-20				
			500%	1.00sec * PL-20				

No.	Abbr.	Parameter function and description	Mode	Default	Range	Unit
		The operation time is continuous operation time in different load ratio. When the time exceeds the level, AL.05 will occur. Below picture take load rate 200% as example.				
PL21		Overload decrease gain: Refer to PL20 for detail.	All	100	15 ~ 600	%
PL22		Cogging compensation: u z y x x: Cogging Torque compensation function 1: enable 0: disable y: estimate Cogging Torque 1: enable 0: disable y: estimate Cogging Torque 1: enable 0: disable z: low-pass filter for estimation 1~A: 30~300 Hz u: high-pass filter for estimation 1~A: 0.5~5K Hz	All	0x1A00	1100h ~ AA11h	N/A

	If PL22.yx = 11, Cogging data will be saved in		
	EEPROM, and then PL22.yx will switched to 01.		

No.	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PL23		Motor temperature sensor: $\begin{array}{c c c c c c c c c c c c c c c c c c c $	All	0	0 ~ 3	N/A
PL24		Motor over temperature mode option: $\begin{array}{c c c c c c c c c c c c c c c c c c c $	AII	0	0~4	N/A
PL25		Motor over temperature trigger level	All	150	0 ~ 100000 0	Ohm

PL26	Motor over temperature release level			0~	
		All	100	100000 0	Ohm
PL27	Motor over temperature timeout setting	All	30	0~300	sec
PL28	Permanent-magnet rotary motor pole number	All	10	2~20	pole
PL29	Permanent-magnet rotary motor rated current	All	30	0~ 4000	0.01A
PL30	Permanent-magnet rotary motor maximum current	All	90	0~ 12000	0.01A
PL31	Permanent-magnet rotary motor rated speed	All	3000	0~ 6000	rpm
PL32	Permanent-magnet rotary motor maximum speed	All	6000	0~ 8000	rpm
PL33	Permanent-magnet rotary motor torque constant	All	0	0~ 13850	0.001 Nm/A
PL34	Permanent-magnet rotary motor rotor inertia	All	0	0~ 214748 3647	10 ⁻⁷ Kg*m ²
PL35	Permanent-magnet rotary motor phase resistance	All	0	0~ 15999	0.001 ohm
PL36	Permanent-magnet rotary motor phase inductance	All	0	0~ 3200	0.01 mh
PL37	Permanent-magnet rotary motor back electromotive force constant	All	0	0~ 3000	10 ⁻⁴ V/rpm

No.	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PL38		Pulse loss detection function: 0: disable 1: when encoder type is square wave(PL04.x = 0), it is enabled.	All	0	0~1	N/A
PL39		 Pulse loss detection threshold: When PL38 = 1 and the Z phase signal is output for the first time, every two Z pulse interval must meet the following two conditions, otherwise AL.57 will be triggered. 1. ±PL39 2. PL40±PL39 PL39 AL.57 AL.57 Z pulse 	All	400	0 ~ 32767	pulse
PL40		Pulse loss detection Z phase interval: Refer to PL39 for detail.	All	2000	0~ 214748 3647	pulse
PL41		Reserved	-	-	-	-
PL42		Linear motor pole pitch	All	0	0~ 32767	0.1mm / 360° (Electri cal angle)
PL43		Linear motor rated current	All	30	0~ 4000	0.01A

No.	Abbr.	Parameter function and description	Mode	Default	Range	Unit
PL44		Linear motor maximum current	All	90	0~ 12000	0.01A
PL45		Linear motor maximum speed	otor maximum speed All 5000			
PL46		Linear motor force constant	All	0	0~ 177362	0.01N /A
PL47		Linear motor phase resistance		0	0~ 100000	0.001 ohm
PL48		Linear motor phase inductance	All	0	0~ 65189	0.01 mH
PL49		Linear motor back electromotive force constant	All	0	0~ 11824	0.1Volt /(m/s)
PL50		Linear Compensation function option 0: disabled 1: enabled automatically after homing is completed.	All	0	0~1	N/A
PL51		Linear motor temperature sensor resistance (Read-only)	All	0	0~ 429496 7295	ohm
PL52						
~		Reserved				
PL73						
PL74	MP1A	Object parameter PC57 mapping The target of the mapping parameter is the parameter address specified by the user. With a 32-bit length, it can be set to map two 16-bit parameters or one 32-bit parameter. If PL74 is set as 0x01010101, it means the mapped	All	0000h	Note *	N/A

		data	in PL87	is the content of	PA01.				
				HIGH	LOW				
			PC41	0x0101	0x0101				
			PC57	PA01(32-bit)					
		lf PC	C41 is se	t to 0x01010112,	it means the mapped	1			
		data	in PC57	is PA01(16-bit)a	nd PA12(16-bit).				
				HIGH	LOW				
			PC41	0x0101	0x0112				
		-	PC57	PA01(16 bits)	PA12(16 bits)				
		For e	example	<u> </u>	1				
		Set I	PC41 to (0x0110 if mapping	g target is PA10				
		Set I	PC41 to (0x0424 if mappin	g target is PD24, and	4			
		you (can refer	to the mapping	parameters list in the	9			
		τοιιο\	wing 2 pa	iges.					
		%D€ func	efault va tion is dis	lue is 0x00 whi sabled.	ch indicate mapping	3			
		% It ₀	can direc	tly map status pa	rameter.				
PL75	MP2A	Obje	ct param	eter PL88 mappi	ng		0000h		
		The	setting is	the same as PL	74				
PL76	МРЗА	Obje	ect param	eter PL89 mappi	ng	All	0000h	NI / 4	
		The	setting is	the same as PL	74			Note *	N/A
PL77	MP4A	Obje	ect param	eter PL90 mappi	ng		0000h		
		The	setting is	the same as PL7	74				
PL78	MP5A	Obje	ect param	eter PL91 mappi	ng		0000h		
		The	setting is	the same as PL	74	All		Note *	N/A
PL79	MP6A	Obje	ect param	eter PL92 mappi	ng	1	0000h		

		The setting is the same as PL74				
PL80	MP7A	Object parameter PL93 mapping		0000h		
		The setting is the same as PL74				
PL81	MP8A	Object parameter PL94 mapping		0000h		
		The setting is the same as PL74				
PL82	MS1A	Object status display 1 mapping	All	0000h	0000h	N/A
		This is used to designate the address of object parameter, The data length of PL82 is 32-bit, Refer to the mapping status number in the following page Mapping Status Display Target Table.			~ 00FFh	
		For example				
		If set PL82 = 0x05, PL95 reads "motor current speed(r/min)"				
		※All the status is Read only.				
PL83	MS2A	Object status display 2 mapping		0000h	0000h	
		The setting is the same as PL82. Read PL96 to			~	
		return the status value.			00FFh	
PL84	MS3A	Object status display 3 mapping		0000h	0000h	
		The setting is the same as PL82. Read PL97 to			~	
		return the status value.	ΔII		00FFh	Ν/Δ
PL85	MS4A	Object status display 4 mapping	7.11	0000h	0000h	1 1/7 (
		The setting is the same as PL82. Read PL98 to			~	
		return the status value.			00FFh	
PL86	MS5A	Object status display 5 mapping		0000h	0000h	
		The setting is the same as PL82. Read PL99 to			~	
		return the status value.			00FFh	

Note *: Depends on the communication address of the parameter.

Mapping parameters List

Parameter	Mapping	Parameter	Mapping	Parameter	Mapping	Parameter	Mapping
number	number	number	number	number	number	number	number
PA01	0x0101	PB01	0x0201	PC01	0x0301	PD01	0x0401
PA02	0x0102	PB02	0x0202	PC02	0x0302	PD01	0x0402
~	~	~	~	~	~	~	~
PA50	0x0150	PB60	0x0260	PC99	0x0399	PD40	0x0440

The following table shows the number of each group mapping parameter.

Parameter number	Mapping number	Parameter number	Mapping number
PE01	0x0501	PF01	0x0601
PE02	0x0502	PF02	0x0602
~	~	~	~
PE99	0x0599	PF99	0x0699

Note: The low-bit(two digits) of the mapping number is the same as the parameter number.

Relevant alarm

Alarm	Alarm item	lesue description	Solution				
Code	Aldini item		Condion				
AL.61	Input group error	Write the wrong mapping number of PC41~PC48.	This error will continue to appear, you need to troubleshoot the problem before you can press the SET button to release.				
AL.62	Input number error	Write the wrong mapping number of PC41~PC48.	You need to troubleshoot the problem before you can press the SET button to release.				
AL.63	Writing range error	Write the wrong mapping range of PC57~PC64.	Press the SET button to release.				
AL.64	Not writable when SON is ON	Write PC57~PC64 with the inhibit parameters when SON is ON.	Press the SET button to release.				

XNone of the above alarms affect the operation of the drive.

Mapping status display target list.

Status number	Content				
00H	Undefined				
01H	Motor feedback pulse number (before				
	electronic gear ratio)				
02H	The number of pulse commands(before				
	electronic gear ratio)				
03H	The deviation of input pulse command and				
	feedback pulse (before E-Gears)				
04H	Pulse command input frequency				
05H	Motor current speed.				
06H	Analog speed command/limit voltage				
07H	Speed input command/limit				
08H	Analog torque command/limit voltage				
09H	Torque input command/limit				
0AH	Effective load rate				
0BH	Peak load rate				
0CH	DC bus voltage				
0DH	Load inertia ratio to motor shaft				
0EH	Instantaneous torque				
0FH	Regenerative load rate				
10H	Absolute pulse number reference Z phase				
11H	Refer to the mapping DIO status table below for				
	DI/DO status output,				
12H	Refer to section 10. 1 for the current alarm				

Mapping DI/DO status list(Read only)

Bit number	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Pin number				DO5	DO4	DO3	DO2	DO1
Bit number	Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
Pin number								
Bit number	Bit23	Bit22	Bit21	Bit20	Bit19	Bit18	Bit17	Bit16
Pin number	DI8	DI7	DI6	DI5	DI4	DI3	DI2	DI1
Bit number	Bit31	Bit30	Bit29	Bit28	Bit27	Bit26	Bit25	Bit24
Pin number								DI9

No	Abbr.	Parameter function and description		Default	Range	Unit
PL87	MP1	Mapping parameter #1	All	0000h	Note *	N/A
		To help users to quick and continuous read and write scattered parameter addresses.				
		PL74 is set to the mapping parameter number by the panel or communication. When the users read and write PL87, it is equivalent to read and write the parameter specified by PL74. %When writing to the specified parameter, it will not be written to the EEPROM.				
PL88	MP2	Mapping parameter#2	All	0000h	Note *	N/A
		The setting is the same as PL87, and the mapping target parameter is determined by PL75.				
PL89	MP3	Mapping parameter#3	All	0000h	Note *	N/A
		The setting is the same as PL87,and the mapping target parameter is determined by PL76.				
PL90	MP4	Mapping parameter#4	All	0000h	Note *	N/A
		The setting is the same as PL87, and the mapping target parameter is determined by PL77.				
PL91	MP5	Mapping parameter#5	All	0000h	Note *	N/A
		The setting is the same as PL87, and the mapping target parameter is determined by PL78.				
PL92	MP6	Mapping parameter#6	All	0000h	Note *	N/A
		The setting is the same as PL87, and the mapping target parameter is determined by PL79.				

No	Abbr.	Parameter function and description	mode	Default	Range	Unit
PL93	MP7	Mapping parameter#7 The setting is the same as PL87, and the mapping target parameter is determined by PL80.	All	0000h	Note *	N/A
PL94	MP8	Mapping parameter#8 The setting is the same as PL87, and the mapping target parameter is determined by PL81.	All	0000h	Note *	N/A

Note *: Depends on the corresponding parameters of PL74~PL81.

No	Abbr	Parameter function and description	mode	Defaul	Rang	Unit
PL95	MS1	The content value of mapping status 1(read only)		0	-	
		To help users to quick and continuous read and write scattered parameter addresses.				
		PL82 is set to the mapping parameter number by the panel or communication. You can refer to the mapping status table. When reading PL95, it is equivalent to read the status value specified by PL82.				
PL96	MS2	The content value of mapping status 2(this parameter is read only)		0		
		The status data displayed is designated by the PL83 setting, which will be return after reading PL96 by communication.				
PL97	MS3	The content value of mapping status 3(this parameter is read only)	All	0	Note *	N/A
		The status data displayed is designated by the PL84 setting, which will be return after reading PL97 by communication.				
PL98	MS4	The content value of mapping status 4(this parameter is read only)		0		
		The status data displayed is designated by the PL85 setting, which will be return after reading PL98 by communication.				
PL99	MS5	The content value of mapping status 5(this parameter is read only)		0		
		The status data displayed is designated by the PL86 setting, which will be return after reading PL99 by communication.				

Note *: The corresponding state determines the range.

Table 8.1 D	Digital	input	(DI)	descriptions
-------------	---------	-------	------	--------------

DI name	Setting	Description
	value	
SON	0x01	When this signal is turned on, the servo is on.
RES	0x02	When alarm occurs, some of alarm can be released by turning on this
	0702	signal.
PC	0v03	When this signal is on, it switches the speed controller from proportion
10	0.000	integral type to proportion type.
TI 0:: 04		When this signal is on, the analog torque limit is valid.'
16	07.04	When this signal is off, the inner torque limit 1 is valid.
TL1	0x 05	When this signal is on, the inner torque limit 2 is invalid.
SP1	0x 06	Speed control option 1
SP2	0x 07	Speed control option 2
SP3	0x 08	Speed control option 3
		In speed mode, when this signal is on, it will activate forward speed
ST1/RS2	0× 00	command.
	08.09	In torque mode, when this signal is on, it will activate reverse torque
		command.
ST2/DS4	0204	In speed mode, when this signal is on, it will activate reverse speed
312/131	UXUA	command.

		In torque mode, when this signal is on, it will activate forward torque			
		command.			
		In internal register position mode, when searching for the origin, the			
URGP	UXUB	servo uses this position as the homing origin by turning on this signal.			
SHOM	0,000	In internal position register mode, when searching for the origin, origin			
	UXUC	searching function is activated by turning on this signal.			
CM1	0x0D	In position mode, it is E-Gear ratio numerator option 1.			
CM2	0x0E	In position mode, it is E-Gear ratio numerator option 2.			
CP		When this signal is on, it clears the position control counter deviation			
UK	UXUF	pulses on its leading edge. The pulse width should be over 10ms.			
	0v10	When this signal is on, it switches all the gain values to the multiplier of			
CDF	0210	PB14~PB17 setting.			
LOP	0x11	It used to switch control modes in multi-mode.			
EMG	0v12	When this signal is off, servo is in emergency status.			
EIMG	0812	You can turn on this signal to release the emergency status.			
POS1	0x13	Position command option 1 in internal register position mode.			
POS2	0x14	Position command option 2 in internal register position mode.			
POS3	0x15	Position command option 3 in internal register position mode.			
CTDC	0.46	When this signal is on, it triggers operation command of internal			
UX16		register position mode.			
LSP	0x18	Limit of forward rotation.			
LSN	0x19	Limit of reverse rotation.			
POS4	0x1A	Position command option 4 in internal register position mode.			
POS5	0x1B	Position command option 5 in internal register position mode.			
POS6	0x1C	Position command option 6 in internal register position mode.			
INHP	0x1D	Inhibit pulse input			
EV1	0x1E	Event trigger Pr command 1.			
EV2	0x1F	Event trigger Pr command 2.			
EV3	0x20	Event trigger Pr command 3.			
EV4	0x21	Event trigger Pr command 4.			
ABSE	0x22	Delta ABS transmission mode.			
ABSC	0x23	Delta/Mitsubishi ABS origin setting.			
ABSM	0x22	Mitsubishi ABS transmission mode.			
STOD	0v24	In internal register position mode, when this signal is on, the motor			
310F	0724	stops.			
MD1	0x28	Mode switching input 1 of turret mode			
MD2	0x29	Mode switching input 2 of turret mode			

MPD1	0x2A	Manually continuous operation in turret mode.
MPD2	0x2B	Manually single operation in turret mode.
SPS	0x2C	The second speed option in turret mode.
TC1	0x2D	Torque command option 1
TC2	0x2E	Torque command option 2
Pt-Pr	0x2F	Pt-Pr mode switching.

Table 8.2 Digital output (DO) descriptions

DO	Setting	Description	
name	value	Description	
RD	0x01	When servo is on and ready to operate, RD-SG is short-circuited.	
		ALM-SG is open-circuited when power is off or activating protection	
	0,000	circuit makes main circuit open.	
	0X02	If no alarm occurs, ALM-SG is short-circuited 1 second after power is	
		on.	
		In position mode, INP-SG is short-circuited when deviation pulse	
	0x03	number is in the positioning range.	
INF/SA		In speed mode, SA-SG is short-circuited when servo motor speed is	
		nearly reached the setting speed.	
HOME	0x04	When homing is complete, this DO is on.	
		In position/speed mode, When the generated torque reaches the torque	
		value set by the internal torque limit 1 or the analog torque limit(TLA),	
TLC/ VLC	0205	TLC -SG is on. TLC-SG is off when SON is off.	
	0,005	In torque control mode, when motor speed reaches internal speed	
		command 1~7 or analog speed limit(VLA), VLC-SG is on, and VLC-SG	
		is off when SON is off.	

MBR	0x06	When using this DO, PA01 must set to $\Box 1 \Box \Box$. When servo is off or alarm occurs, MBR-SG is off. MBR-SG is off when alarm occurs, and it's not related to main circuit status.		
WNG	0x07	You should set PD19 for pin assignment before using this signal otherwise, this signal is invalid. When alarm occurs, WNG-SG is on. If no alarm occurs, WNG-SG is off after power on 1 second.		
ZSP	0x08	When servo motor speed is below the value of zero speed, ZSP-SG is on.		
CMDOK	0x09	When internal position command is completed or internal position command stops, this DO is on.		
OLW	0x0A	When overload setting level(PA17) is reached, this DO is on.		
MC_OK	0x0B	When both CMDOK and INP are ON, then this DO is on, otherwise it is off.		
OVF	0x0C	When motor position command pulse number is bigger than 2 ³¹ -1 or smaller than-2 ³¹ , this DO is on, otherwise it is off.		
SWPL	0x0D	When position command is bigger than software forward limit(PF86), this DO is on, otherwise, it is off.		
SWNL	0x0E	When position command is smaller than software reverse limit(PF87), this DO is on, otherwise, it is off.		
ABSW	0x0F	The related alarms of Delta absolute encoders will be indicated by this DO output		
ABSV	0x10	When the position of the Mitsubishi absolute system is lost, ABSV is on.		
POS1	0x11	Position output point1 of Turret mode.		
POS2	0x12	Position output point 2 of Turret mode.		
POS3	0x13	Position output point 3 of Turret mode.		
POS4	0x14	Position output point 4 of Turret mode.		
POS5	0x15	Position output point 5 of Turret mode.		
POS6	0x16	Position output point 6 of Turret mode.		
LOPM	0x17	If in control switching mode, the current using control mode (related to LOP) is output.		

Note: you can set PD27 to determine the logic level of DO, which is normally open(a contact) or normally close(b contact).

9. Communication function

9.1 Communication hardware interface and wiring

This servo drive has the serial communication function of RS-485 and plug-and-play universal USB. By using this function, it can drive the servo system, change parameters and monitor the status of the servo system. However, RS-485 and USB communication functions cannot be used at the same time, and the wiring instructions of RS485 and USB are as follows:

RS-485

(1) External schematic diagram

You can operate maximum 32 axis of servo drives from device number 1 to 32 on the same Bus.

(2) Wiring diagram

Recommendation: if the communication is likely to be interrupted, you can short circuit the GND of the communication device (or the terminal with the same communication protocol such as HMI) and the GND (PIN8) of the servo controller CN3 to reduce communication failure.

USB

(1) External schematic diagram

Please use standard Mini-USB cable. It is recommended to use the USB cable with a magnetic ring, which has stronger anti-interference function.

9.2 Communication specifications.

When using RS-485 communication function to operate servo drive, the communication specifications of SERVO AMP are as follows:

(1) Device number setting (PC20)

Refer to PC20 and its setting range is 1~32.

(2) Communication response delay time(PC21)

0	0	0	х

x=0: delay time is within 1ms, x=1: delay time is over 1ms

(3) Communication protocol option (PC22)

x=0:	7 data bit, No parity	2 Stop bit	(Modbus, ASCII Mode)
x=1:	7 data bit, Even parity	1 Stop bit	(Modbus, ASCII Mode)
x=2:	7 data bit, Odd parity	1 Stop bit	(Modbus, ASCII Mode)
x=3:	8 data bit, No parity	2 Stop bit	(Modbus, ASCII Mode)
x=4:	8 data bit, Even parity	1 Stop bit	(Modbus, ASCII Mode)

- x=5: 8 data bit, Odd parity 1 Stop bit (Modbus, ASCII Mode)
- x=6: 8 data bit, No parity 2 Stop bit (Modbus, RTU Mode)
- x=7: 8 data bit, Even parity 1 Stop bit (Modbus, RTU Mode)
- x=8: 8 data bit, Odd parity 1 Stop bit (Modbus, RTU Mode)
- (4) Transmission speed (PC22)

0	0	у	х
---	---	---	---

y=0: 4800bps,	y=1: 9600bps,	y=2: 19200bps	
y=3: 38400bps,	y=4: 57600bps,	y=5: 115200bps	

9.3 Modbus communication protocol

To communicate with the computer, each servo drive must set its device number(PC20) firstly, and then the computer controls the individual servo drives according to the device number. The communication method is MODBUS Networks, and there are two mode of MODBUS network communication: ASCII (American Standard Code for Information Interchange) and RTU (Remote Terminal Unit). You can set the communication mode(ASCII or RTU) by PC21 according to your requirements.

Note: USB and MODBUS cannot be used at the same time.

The Shihlin servo drive provides these function codes: 0x03, 0x04, 0x06, 0x10, which can do relevant communication control with the host controller.

9.3.1 ASCII mode

(a)Code description

Every 8-bit data frame consists of two ASCII characters. For example, if 1 byte of data 75H (hexadecimal notation) is represented by ASCII "75", which contains the ASCII code of '7' (37H) and the ASCII code of '5' (35H).

(b)Frame structure

11 bit frame structure(for 8-bit data length)

10 bit frame structure (for 7-bit data length)

(c)Communication data structure

Bit code	Name	Description
STX	Start character	":" (3AH) of ASCII.
ADR	Device number	1 byte consists of 2 ASCII codes
CMD	Function code	1 byte consists of 2 ASCII codes
DATA(n-1)		
	Data content	n-word = 2n-byte consists of 4n ASCII codes, n <= 29
DATA(0)		
LRC	Error check	1 byte consists of 2 ASCII codes

End1	End code 1	(0DH) of ASCII (CR)
End0	End code 0	0AH of ASCII (LF)

The detailed descriptions in the communication data format box are as follows:

STX(Communication start)

':' Character

ADR(Communication device number)

Communication device number is 1~32. For example: if communicate with the servo drive in device number 18 (hexadecimal 12H):

ADR='1','2' => '1'=31H,'2'=32H

CMD(function code) and DATA(data word)

The format of data characters depends on the function code, the common used function codes are as follows:

Example 1, function code 03H, reading N words:

The maximum N is 29, for example: read 2 words consecutively from the start address of the servo drive is 0100H in the device number 01H,

Command message(Host)		Response message(Slave)	
STX	:	STX	:
ADR	0		0
	1	ADR	1
CMD	0	CMD	0
	3	CIVID	3
	O Byte length		0
Start data		Byte length	
address	0	(byte)	4
	0		
Word length	0		0
	0	Content of start	1
	0		0
	2	010011	2
LRC check	F	Content of the	1

			2nd data	2
		address 0101H	2	
	9			1
End1 0DH(CR)				С
		LKC Check	2	
End0 04	0AH(LF)		End1	0DH(CR)
		End0	0AH(LF)	

Example 2: function code 06H, writing 1 single word

For example: write 325 (0145H) to the starting address 0100H of the servo drive with device number 01H.

Command message(Host)		
STX	:	
۸DR	0	
	1	
CMD	0	
	6	
	0	
Start data	1	
address	0	
	0	
	0	
Data content	1	
Data content	4	
	5	
LRC check	В	
	2	
End1	0DH(CR)	
End0	0AH(LF)	

Response message(Slave)		
STX	:	
ADR	0	
	1	
CMD	0	
OND	6	
	0	
Start data	1	
address	0	
	0	
	0	
Data content	1	
Data content	4	
	5	
LRC check	В	
	2	
End1	0DH(CR)	
End0	0AH(LF)	
Example 3 : function code 10H, writing multiple words

Example: write the data of 2 byte groups 0BB8H and 0000H to the starting address 0112H of the servo drive with device number 01H.That is, 0BB8H is written to 0112H and 0000H is written to 0113H. The maximum allowable data in one single access is 10.

Command message(Host)	
STX	:
	0
ADR	1
CMD	1
CIND	0
	0
Start Data	1
Address	1
	2
	0
Data quantity	0
(word)	0
· · · ·	2
Data quantity	0
(byte)	4
	0
Content of the	В
1 st Data	В
	8
	0
Content of the	0
2nd Data	0
	0
L PC abaak	1
	3
End1	0DH(CR)
End0	0AH(LF)

Response message(Slave)	
STX	:
	0
ADR	1
CMD	1
CIVID	0
	0
Start Data	1
Address	1
	2
	0
	0
Data quantity	0
	2
LRC check	D
	A
End1	0DH(CR)
End0	0AH(LF)

LRC error check(ASCII mode)

The error check in ASCII mode is LRC (Longitudinal Redundancy Check). To calculate the LRC value: add all the data from ADR to the last one, take the result by using 256 as the unit, and the excess part is removed(for example, the result obtained after adding is 128H in hexadecimal, then only 28H is taken), and then calculate complement of 2. The complement is LRC error value.

For example: read 2 words (word) from the start address 0104h of the servo drive device number 01h. 01H+03H+01H+04H+00H+02H = 0BH. The complement of 2 is F5H, thus LRC is 'F','5'.

STX	:
ADR	0
	1
CMD	0
CIVID	3
	0
Start Data	1
Address	0
	4
	0
	0
Data quantity	0
	2
LRC error check	F
	5
End1	0DH(CR)
End0	0AH(LF)

End1, End0(communication is completed)

Use "0Dh" which character is '\r' [carriage return] and "0Ah" which character is '\n' [new line] to denote the end of communication.

9.3.1 RTU mode

(a) Code description.

Each 8-bit data consists of two 4-bit hexadecimal characters. For example: 1-byte data is expressed as 62H.

(b) Communication data structure

Data frame is as below:

Bit code	Name	Content
STX	Start word	To keep an idle more than 6mS
ADR	Device number	1 byte
CMD	Function code	1 byte
DATA(n-1)		
	Data content	n-word = 2n-byte, n<=29
DATA(0)		
CRC	Error check	2 byte
End	End code	To keep an idle more than 6mS

STX(start communication)

To keep an idle for more than 6mS.

ADR(Communication device number)

The device number is from 1 to 32. For example, the device number of the servo drive is 18 (hexadecimal 12H) ADR=12H.

CMD(Function code)and DATA(Data word)

The format of data characters are varied according to different function codes.

Example 1: function code: 03h, reading N words.

The maximum allowable data(N) in one single access is 29, for example: read 2 words consecutively from the start address 0200H of the servo drive device number 01H.

Command message(Host)	
ADR	01H
CMD	03H
Start data	02H(high byte)
address	00H(low byte)
Data guantity(word)	00H
	02H
CRC Check	CEH(low byte)
(low byte)	
CRC Check (high byte)	B3H(high byte)

Response message(Slave)	
ADR	01H
CMD	03H
Data	041
quantity(byte)	040
Content of start	00H(high byte)
data address 0100H	B1H(low byte)
content of 2nd	1FH(high byte)
data address 0101H	40H(low byte)
CRC Check	
(low byte)	
CRC Check	D4H(high byte)
(high byte)	

Example 2: function code: 06H, writing single word.

For example: write 100 (0064H) to the starting address 0200H of the servo drive with device number 01H.

Command message(Host)	
ADR	01H
CMD	06H
Start data	02H(high byte)
address	00H(low byte)
Data content	00H(high byte)
	64H(low byte)
CRC Check	80H(low byto)
(low byte)	
CRC Check	00H(bigh byte)
(high byte)	ser (nigh byte)

Response message(Slave)	
ADR	01H
CMD	06H
Start data	02H(high byte)
address	00H(low byte)
Data content	00H(high byte)
	64H(low byte)
CRC Check	80H/low byto)
(low byte)	
CRC Check	00H(bigh byto)
(high byte)	an(ingli byle)

Example 3 : function code 10H, writing multiple words.

Write the data of 2 byte groups 0BB8H and 0000H to the starting address 0112H of the servo drive with device number 01H, that is, 0BB8H is written to 0112H and 0000H is written to 0113H. The maximum allowable data in one single access is 10.

Command message(Host)	
ADR	01H
CMD	10H
Start data	01H(high byte)
address	12H(low byte)
Data quantity	00H(high byte)
(word)	02H(low byte)
Data	04H
quantity(byte)	
Content of the 1	0BH(high byte)
st Data	B8H(low byte)
Content of the	00H(high byte)
2nd Data	00H(low byte)
CRC Check	ECH(low byte)
(low byte)	
CRC Check	EBH(high byte)
(high byte)	

Response message(Slave)	
ADR	01H
CMD	10H
Start data	01H(high byte)
address	12H(low byte)
Data quantity	00H(high byte)
	02H(low byte)
CRC Check	E0H(low byto)
(low byte)	
CRC Check	21 U(bigh byto)
(high byte)	STR(high byte)

CRC error check value calculation(RTU mode) :

The error check in RTU mode is CRC(Cyclical Redundancy Check).

The CRC error detection value calculation is explained in the following steps:

Step 1: load a 16-bit register with the content of FFFFH, which is called the "CRC" register.

Step 2: perform Exclusive OR calculation between the first byte of the command message and the 16-bit CRC register, and then save the result in the CRC register.

Step 3: check the least significant bit (LSB) of the CRC register. If the bit is 0, shift the register one bit to the right. If the bit is 1, shift the register one bit to the right and execute Exclusive OR calculation between the CRC register and A001H.

Step 4: repeat step 3 for 8 times and then go to step 5.

Step 5: repeat steps 2 and 4 until all bytes have been processed. The content of the CRC register is the CRC value.

Note: after calculating the CRC error check value, fill in the low byte of the CRC value in the command message first, and then fill in CRC high byte. Please refer to below example:

Example: read 2 words from the start address 0101H of the servo drive with device number 01H. The last content of the CRC register calculated from ADR to the last byte of the data is 3794H, then the command message is as follows. It should be noted that 94H is sent before 37H.

ADR	01H
CMD	03H
Start data address	01H(high byte)
	01H(low byte)
Data quantity	00H(high byte)
	02H(low byte)
CRC Check (low byte)	94H(low byte)
CRC Check (high byte)	37H(high byte)

End1, End0(communication is completed)

Keeping an idle for more than 6mS means communication is completed.

CRC program example:

This function calculates the CRC value in the C language. It needs two parameters:

unsigned char* data;

unsigned char length;

{

This function will return the CRC value of unsigned integer type.

unsigned int crc_chk(unsigned char* data, unsigned char length)

```
int j;
unsigned int reg_crc=0xFFFF;
while( length-- )
{
    reg_crc^= *data++;
    for (j=0; j<8; j++ )</pre>
```

```
{
    if( reg_crc & 0x01 ) /*LSB(bit 0 ) = 1 */
    reg_crc = (reg_crc >> 1)^0xA001;
    else
        reg_crc = (reg_crc>>1);
    }
}
return reg_crc;
```

(c) Function code and error code.

}

The function code and error code of the servo drive is introduced as follows:

Function code	Description
03H	Read parameter
04H	Read-only parameter(Read-only)
06H	Write one single parameter
10H	Write multiple parameter

Function code 03H indicates reading parameter, the maximum allowable parameter in one single access is 29.

Function code 04H indicates accessing the read-only parameter, the maximum allowable parameter in one single access is 29.

Function code 06H indicates writing a single parameter.

Function code 10H indicates writing multiple parameters, and the maximum allowance parameter in one single access is 10.

Error code	Description
01	Function code error
02	Parameter address error
03	Parameter range error

Error code 01H indicates the received function code is wrong.

Error code 02H indicates the received parameter address is wrong. The parameter address range should be within 0x0000~0x20FF.

Error code 03H indicates the received parameter value is out of range, The parameter value range is mainly judged as follows:

1. Check whether the number of read data exceeds the range and current data (word) ranges is from 1 to 29 words.

2. Check whether the written parameter value exceeds range. In current communication address (0x0000~0x20FF), most addresses have a defined range. If some addresses are reserved and not used, the range is -32728~32767.

When there is an error in receiving data, the function code will be added 0x80, which means an error has occurred. The following package will be returned.

(a)ASCII mode

STX	د. ۲ -
Slave device	ʻ0'
number	'1'
Function	'8'
T unotion	'3'
Error code	'0'
	'2'
LRC CHK	'7'
	'A'
END1	CR
END0	LF

(b)RTU mode

Slave device number	01H
Function	83H
Error code	02H
CRC CHK Low	СОН
CRC CHK High	F1H

9.4 Write and read communication parameters.

(1) Status monitor(Read-only)

Communication address	Content	Data length
0x0000	Motor feedback pulses (after E-Gear ratio) [pulse]	2word
0x0002	Input number of pulse commands (before E-Gear ratio)[pulse]	2word
0x0004	Number of pulses error(after E-Gear ratio) [pulse]	2word
0x0006	Pulse command input frequency [Hz]	2word
0x0008	The value of communication address 0x0235 determines its content. Setting !=2 → Motor current value speed[rpm] Setting =2 → Motor current value speed[mm/s]	2word
0x000A	Analog speed command/limit voltage [V] (Display 2 decimal point)	2word
0x000C	The value of communication address 0x0235 determines its content. Setting value !=2 → speed command /limit [rpm] Setting value =2 → speed command /limit [mm/s]	2word
0x001E	Analog torque command/limit voltage [V] (Display 2 decimal point)	2word
0x0010	Torque input command/limit [%]	2word
0x0012	Effective load ratio [%]	2word
0x0014	Peak load ratio [%]	2word

0x0016	DC bus voltage [V]	2word
0x0018	Load to motor inertia ratio [times] (Display 1 decimal point)	2word
0x001A	Instantaneous torque [%]	2word
0x001C	Regeneration load ratio [%]	2word
0x001E	The motor feedback pulse number of full-closed encoder [pulse]	2word
0x0020	Z phase offset [pulse] (Note 1)	2word
0x0022	Input number of pulse commands(after E-Gear ratio) [pulse]	2word
0x0024	Motor feedback pulse number(before E-Gear ratio) [pulse]	2word
0x0026	Pulses error number(before E-Gear ratio) [pulse]	2word

Note 1: Z phase offset, that is, Z phase origin is 0, sets +5000 or -5000 pulses when the motor rotates in the forward or reverse direction. It is as below picture shows:

Every two Z phase pulse commands interval is 10000 pulses

(2) Digital IO monitor(Read-only)

(a) IO pin status

Communication	Content	Data
address		length
0x0204	To show the ON/OFF status of DI pin, the pin assignment	1word
	is as follows	

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit number
DI8	DI7	DI6	DI5	DI4	DI3	DI2	DI1	Pin number
Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8	Bit number
				DI12	DI11	DI10	DI9	Pin number

Note: the status of this digital IO pin is the integrated with both input contact (DI) source control switch (PD16) and the communication control digital input contact status (PD25), below example will further illustrate this:

The external hardware terminals DI12~DI1 status are represented by bit11~bit0, The following use binary value to illustrate:

DI contact source control switch (PD16): 111111000000.

The state of the external hardware terminal: 111100001111 (from left to right are DI12~DI1, 1 means ON, 0 means OFF).

Communication control DI contact status (PD25): 111000111000.

In summary, the status of DI12~DI7 (communication address 0x0204) is determined by the communication, and DI6~DI1 is determined by the status of the external hardware terminal.

Therefore, the status of DI terminal (communication address 0x0204) is represented as 111000 001111.

Communication	Content	Data
address		length
0x0205	To show the ON/OFF status of DO pin, the pin	1word
	assignment is as follows	

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit number
		DO6	DO5	DO4	DO3	DO2	DO1	Pin number

(b) IO pin function

Communication address	Content	Data length
0x0206~0x020D	Display the current DI/DO pin function definition, the pin assignment is as follows.	1word

Note: if DI/DO functions are not applicable to the current control mode, it will return 0.

Example: if in speed control mode currently, PD07=0x000B, then the bit0~bit7 of Address 0x0208 will return 0.

Address: 0x0206

Bit8~Bit15	Bit0~bit7	Bit number
DI1	DI2	Pin number
0x00~0x2F	0x00~0x2F	Function code

Address: 0x0207

Bit8~Bit15	Bit0~bit7	Bit number
DI3	DI4	Pin number
0x00~0x2F	0x00~0x2F	Function code

Address: 0x0208

Bit8~Bit15	Bit0~bit7	Bit number	
DI5	DI6	Pin number	
0x00~0x2F	0x00~0x2F	Function code	

Address: 0x0209

Bit8~Bit15	Bit0~bit7	Bit number
DI7	D8	Pin number
0x00~0x2F	0x00~0x2F	Function code

Address: 0x020A

Bit8~Bit15	Bit0~bit7	Bit number
DI9	D10	Pin number
0x00~0x2F	0x00~0x2F	Function code

Address: 0x020B

Bit8~Bit15	Bit0~bit7	Bit number
DI11	DI12	Pin number
0x00~0x2F	0x00~0x2F	Function code

Address: 0x020C

Bit8~bit15	Bit0~bit7	Bit number	
DO2	DO1	Pin number	
0x00~0x3F	0x00~0x3F	Function code	

Address: 0x020D

Bit8~bit15	Bit0~bit7	Bit number	
DO4	DO3	Pin number	
0x00~0x3F	0x00~0x3F	Function code	

Address: 0x020E

Bit8~bit15	Bit0~bit7	Bit number
DO6	DO5	Pin number
0x00~0x3F	0x00~0x3F	Function code

(C)Current control mode and servo status(Read-only)

Communication	Con	Data		
address	Content			
0x0200	Bit0: servo ready status (0: Se	ervo OFF, 1: Servo ON)	1word	
	Bit0~Bit3: display current cont	rol mode of drive.		
	0: Pt position mode.	1: absolute Pr position		
		mode.		
0x0201	2: incremental Pr position mode.	3: speed control mode.	1word	
	4: torque control mode.	5: full-closed loop control mode.		

0x07	0x06	0x05	0x04	0x03	0x02	0x01	0x00	Function code
SP2	SP1	TL1	TL	PC	RES	SON	N/A	Signal
0x0F	0x0E	0x0D	0x0C	0x0B	0x0A	0x09	0x08	Function code
CR	CM2	CM1	SHOM	ORGP	ST2/RS1	ST1/RS2	SP3	Signal
0x17	0x16	0x15	0x14	0x13	0x12	0x11	0x10	Function code
	CTRG	POS3	POS2	POS1	EMG	LOP	CDP	Signal
0x1F	0x1E	0x1D	0x1C	0x1B	0x1A	0x19	0x18	Function code
EV2	EV1	INHP	POS6	POS5	POS4	LSN	LSP	Signal
		0x25	0x24	0x23	0x22	0x21	0x20	Function code
		CAM	STOP	ABSC	ABSE	EV4	EV3	Signal
					0x2F	0x2E	0x2D	Function code
					Pt-Pr	TC2	TC1	Signal

Note 1: the DI function selection definition table is as follows:

Note2 : the DO function selection definition table is as follows:

0x05	0x04	0x03	0x02	0x01	0x00	Function code
TLC/VLC	HOME	INP/SA	ALM	RD	N/A	Signal
0x0B	0x0A	0x09	0x08	0x07	0x06	Function code
MC_OK	OLW	CMDOK	ZSP	WNG	MBR	Signal
0x11	0x10	0x0F	0x0E	0x0D	0x0C	Function code
CAP_OK	ABSV	ABSW	SWNL	SWPL	OVF	Signal
0x17	0x16	0x15	0x14	0x13	0x12	Function code
LOPM				CAM_AREA2	CAM_AREA1	Signal
			0x18	0x20~0x2F		Function code
			PtrM	SDO_0 ~ SDO_F		Signal

(3) <u>Alarm information (Read-only)</u>

Communication	Contont	Data
address	Content	length
0x0100	Current alarm	1word
0x0101	The last alarm	1word
0x0102	The 2nd alarm in the past	1word
0x0103	The 3rd alarm in the past	1word
0x0104	The 4th alarm in the past	1word
0x0105	The 5th alarm in the past	1word

0x0106	The 6th alarm in the past	1word
0x0107	The 7th alarm in the past	1word
0x0108	The 8th alarm in the past	1word
0x0109	The 9th alarm in the past	1word
0x010A	The 10th alarm in the past	1word
0x010B	Alarm occurrence time(low word)(PG05)	1word
0x010C	Alarm occurrence time(high word)(PG06)	1word
0x010D	1st alarm record occurrence time(low word)(PG07)	1word
0x010E	1st alarm record occurrence time(high word) (PG08)	1word
0x010F	2nd alarm record occurrence time(low word) (PG09)	1word
0x0110	2nd alarm record occurrence time(high word)(PG10)	1word
0x0111	3rd alarm record occurrence time(low word)(PG11)	1word
0x0112	3rd alarm record occurrence time(high word)(PG12)	1word
0x0113	4th alarm record occurrence time(low word)(PG13)	1word
0x0114	4th alarm record occurrence time(high word)(PG14)	1word
0x0115	5th alarm record occurrence time(low word)(PG15)	1word
0x0116	5th alarm record occurrence time(high word)(PG16)	1word
0x0117	6th alarm record occurrence time(low word)	1word
0x0118	6th alarm record occurrence time(high word)	1word
0x0119	7th alarm record occurrence time(low word)	1word
0x011A	7th alarm record occurrence time(high word)	1word
0x011B	8th alarm record occurrence time(low word)	1word
0x011C	8th alarm record occurrence time(high word)	1word
0x011D	9th alarm record occurrence time(low word)	1word
0x011E	9th alarm record occurrence time(high word)	1word
Note: returning 0x00ff m	eans no alarm returning 0x0001 means AL 01 occu	irs returning

Note: returning 0x00ff means no alarm, returning 0x0001 means AL.01 occurs, returning 0x0012 means AL.12 occurs, and so on.

(4) <u>Alarm data clearance</u> (readable and writable)

Communication	Contont	Data
address		length
	If "0x1EA5" is written to this address, it will clear current	1word
0x0130	alarm.	
	When reading this address, it will return current alarm.	
	The setting range is 0~0xFFFF.	

0x0131	If "0x1EA5" is written to this address, it will clear all the	1word
	alarm record and occurrence time.	
	When reading this address, it will return the last alarm	
	record. The setting range is 0~0xFFFF.	

(5)Parameter reading and writing (readable and writable)

Communication	Contont				
address	Content	length			
	PA group parameters, and the data length of each parameter				
0x0300~0x03C5	is 32 bits and occupying 2 addresses: such as PA01:	2word			
	0x0300~0x0301.				
	PB group parameters, and the data length of each parameter				
0x0400~0x04C5	is 32 bits and occupying 2 addresses: such as PB01:	2word			
	0x0400~0x0401.				
	PC group parameters, and the data length of each parameter				
0x0500~0x05C5	is 32 bits and occupying 2 addresses: such as PC01:	2word			
	0x0500~0x0501.				
	PD group parameters, and the data length of each parameter				
0x0600~0x06C5	is 32 bits and occupying 2 addresses: such as PD01:	2word			
	0x0600~0x0601.				
	PE group parameters, and the data length of each parameter				
0x0700~0x07C5	is 32 bits and occupying 2 addresses: such as PE01:	2word			
	0x0700~0x0701.				
	PF group parameters, and the data length of each parameter				
0x0800~0x08C5	is 32 bits and occupying 2 addresses: such as PF01:	2word			
	0x0800~0x0801.				
0x0A00~0x0A62	There are 99 parameters in PG group, and the data length of	1word			
	each parameter is 16 bits.				
0x0B00~0x0B62	There are 99 parameters in PH group, and the data length of	1word			
	each parameter is 16 bits.				
	PL group parameters, and the data length of each parameter				
0x0E00~0x0EC5	is 32 bits and occupying 2 addresses: such as PL01:	2word			
	0x0E00~0x0E01.				

Note 1: the maximum allowance data in one access is 29 (29 words).

Note 2: when writing PA~PH group parameters by communication by using MODBUS 0x06 or 0x10 function code, the drive firmware must confirm that the write value cannot exceed the range. If it exceeds the range and communication error will occur, you can refer to section 9.3 for details.

(6) <u>Reset to the factory default value</u>(readable and writable)

Communication	Contant			
address	Content			
	After writing data 0x1EA5 to this address, all parameters of			
0x0140	PA~PF and PL group will be reset to the default value, and the			
	writing will be completed after 3 seconds.			
	The setting range is 0~0xFFFF	1word		
	When reading this parameter, if 1 is returned, it means the drive			
	is still writing EEPROM. If 0 is returned, it means the writing to			
	EEPROM is completed.			

(7) <u>Software input contact control(readable and writable)</u>

Step 1: select the input mode of DI contact.

Communication	Content	Data		
address	Content			
	Digital input source control option(PD16)			
	1. each bit of this parameter determines the signal input			
	control source of 1 DI.			
	Bit0 ~ Bit8 is correspond to DI1 ~ DI9			
0x061E	2.Bit setting shows as below:	2word		
	0: input contact status is controlled by external hardware			
	terminal.			
	1: input contact status is controlled by communication			
	contact(PD25).			

Step 2: writing DI contact on/off status(ON/OFF)

Communication	Content	Setting	Data
address	Content	range	length
	To write the status of DI (ON/OFF) as shown in		
0x0630	below:		
	Writing data is valid only when the corresponding bit of PD16 is 1, otherwise the actual DI contact status		Qword
			Zworu
	will be still controlled by external hardware contact.		
	Refer to PD25 for details.		

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit number
SDI8	SDI7	SDI6	SDI5	SDI4	SDI3	SDI2	SDI1	Pin name

Bit12~Bit31	Bit11	Bit10	Bit9	Bit8
All these bit values should be set to 0.	SDI12	SDI11	SDI10	SDI9

Note: cautions for test mode (terminal forced output control, JOG test, positioning test)

When using the communication commands in the test mode, the user must pay attention to the following matters, otherwise the drive will not work normally in the test mode.

1. The drive can enter the test mode only when there is no alarm and the servo is off.

2. In the test mode, if the communication is interrupted for more than 1 second, the drive will switch to Servo Off status and exit the test mode. Therefore, the Host device should perform uninterrupted communication in the test mode (each communication command interval should be within 1 second). There are no special restrictions on the communication command address. For example, you can repeat the read command to the communication address 0x0900 to maintain the continuous communication state.

3.After entering the test mode (terminal forced output control, JOG test, positioning test), the normal external hardware signal and software contact signal are invalid, except the EMG signal.

(8) DO forced output (readable and writable)

Step 1: read the alarm and Servo ON information from the following communication address to make sure that there is no alarm and the servo is in servo Off status currently, otherwise it will not enter test mode.

Communication	Content	
address		
0x0900	0x0UVW, in which UV=Alarm information, W=1 means SON	1word
(Read-only)	signal is ON, W=0 means SON signal is OFF	rword

Step 2: enter Forced DO mode and write data 0x0002, the definition of its communication address is as follows:

Communication	Content	Setting	Data
address	Content	range	length
	To switch operation mode		
0x0901	0000: exit test mode		
	0001: reserved	0000	
	0002: DO forced output(Output signal	~	1word
	forced output)	0004	
	0003: JOG operation		
	0004: positioning operation		

Note: when writing data 0x0002~0x0004 to the address 0x0901, the test mode cannot be entered if SERVO is ON.

Step 3 : writing DO contact on/off status

Communication	Content	Setting	Data
address		range	length
0x0203	To write DO contact on/off status, as	0~0x003F	1word
	shown below		

Bit6~Bit15	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Bit number
	DO6	DO5	DO4	DO3	DO2	DO1	Pin name

Step 4: exit Forced DO mode: write data 0x0000 to the communication address 0x0901

(9)JOG test(readable and writable)

<u>Step 1: read the alarm and Servo ON information from the following communication</u> address. Make sure that there is no alarm and the servo is in servo Off status currently, otherwise it will not enter test mode.

Communication	dress	
address		
0x0900	0x0UVW, in which UV=Alarm information, W=1 means SON	1word
(Read-only)	signal is ON, W=0 means SON signal is OFF	

Step2: enter JOG mode: write data 0x0003 to the communication address 0x0901.

|--|

Communication	Contont	Data
address	Content	length
	To set acceleration/ deceleration time constant in JOG	1word
0x0902	mode and positioning mode.	
	(range: 0~20000)(unit: ms)	

Step4: set JOG speed command and activate it.

Communication	Content	Data
address	Content	length
	To input the speed command in JOG and positioning	1word
0x0003	mode.	
0x0903	(Range 0~6000) (unit: rpm(rotary motor), mm/s(linear	
	motor))	

Step 5: set JOG test operation command

Communication	Content	Data	
address		length	
	0: JOG operation is stopped.		
0,0004	1: JOG is operating forwardly.	1word	
0X0904	2: JOG is operating reversely.		
	The setting range is 0~2.		

Step 6: exit JOG mode, write data 0x0000 to communication address 0x0901.

(10) <u>Positioning test (readable and writable)</u>

<u>Step 1: read the alarm and Servo ON information from the following communication</u> <u>address, make sure that currently there is no alarm and the servo is in servo Off status,</u> <u>otherwise it will not enter test mode.</u>

Communication	munication Content	
address		
0x0900	0x0UVW, in which UV=Alarm information, W=1 means SON	1word
(Read -only)		

Step 2: enter positioning mode: write 0x0004 to the communication address 0x0901.

Step3: set the acceleration /deceleration time constant.

Communication	Contont		
address	Content	length	
0,0002	To set acceleration and deceleration time constant in JOG	1word	
0x0902	mode and positioning mode.	Tword	

Step 4: set positioning speed command

Communication	Contont	Data
address	Content	length
0x0903	To input the speed command in JOG and positioning mode (range: 0~3000)(unit: rpm(rotary motor), mm/s(linear motor))	1word

Step 5: set the command pulse number in positioning mode.

Communication	Contont	Data
address	address	
0x0905	To set the pulse number in positioning mode (0x0905 returns	
~	low 16 bits, 0x0906 returns high 16 bits).	1word
0x0906	The range is 0 $\sim~(2^{31}$ -1) (unit: pulse)	

Step 6: positioning test operation

Communication	Content		
address		length	
0x0907	When the written data is 0, it means that the positioning operation is paused/stopped (send the command during the operation will pause operation, and send the 2nd command will stop the operation) When the written data is 1, it means the positioning operation is running forwardly When the written data is 2, it means that the positioning operation is running reversely (after the drive receives the data, the position command will change to a negative value inside) (The setting range is 0~2)	1word	

Step 7: exit positioning mode: write data 0x0000 to the communication address 0x0901.

10.Troubleshooting

CAUTION	 When an alarm occurs, eliminate its root cause first to ensure safety. Wait until the alarm is cleared and then restart operation, otherwise, it may cause injury.
	• When an alarm such as AL03, AL05, AL10, AL.34 occurs, please check the root cause and eliminate it, turn off the power for more than 30 seconds to cool down the temperature of power module, and then restart the power to avoid servo drive damage which is caused by the repeated occurrence of alarms.

10.1 Alarm list and corrective actions

An alarm or warning will be displayed when an error occurs during operation. If Alarm or warning occurs, please follow the section 11.2 to take appropriate actions. Setting PD19 to xxx1 to output the alarm code.

The alarm code is output based on the ON/OFF status between each PIN and SG, and the warning (AL12-AL1B) has no alarm code.

When an alarm occurs, the related DO will output alarm code in below list. In normal operation, the related DO output the setting signal before alarm occurs.

	Alarm code		ode		Alarm elimination method			
	Display	CN1	CN1	CN1		Power	Press SET button in	RES
	Display	41	42	45	Alarminame	OFF→ON	current alarm	signal
							screen	
	AL.01	0	1	0	Over voltage	0		
	AL.02	0	0	1	Under voltage	0	0	0
	AL.03	0	1	1	Over current	0		
	AL.04	0	1	0	Regenerative error	0	0	0
Ľ	AL.05	1	0	0	Overload 1	0	0	0
Ala	AL.06	1	0	1	Over speed	0	0	0
	AL.07	1	0	1	Abnormal pulse command	0	0	0
	AL.08	1	0	1	Position deviation excessive	0	0	0
	AL.09	0	0	0	Serial communication error	0	0	0
	AL.0A	0	0	0	Serial communication timeout	0	0	0

(CN1-41: DO1, CN1-42: DO2, CN1-45: DO5)

AL.0B	1	1	0	Encoder error 1	0		
AL.0D	1	1	0	Fan error	0		
AL.0E	0	0	0	IGBT overheat	0		
AL.0F	0	0	0	Memory error	0		
AL.10	0	0	0	Overload 2	0		
AL.11	1	1	1	Motor combination error	0		
AL.20	1	1	1	Motor collision error	0	0	0
AL.21	1	1	1	Motor UVW cable disconnection	0		
AL.22	1	1	0	Encoder communication error	0		
AL.23	0	1	0	Excessive position error of full-closed	0	0	0
				loop control			
AL.24	0	0	0	Motor encoder type error	0		
AL.25	1	1	0	Linear scale is disconnected	0		
AL.26	1	1	0	Encoder error 3	0		
AL.27	1	1	0	Encoder error 4	0		
AL.28	1	1	0	Encoder overheat	0		
AL.29	1	1	0	Encoder error 5(overflow)	0		
AL.2A	1	1	0	Absolute encoder error 1	0		
AL.2B	1	1	0	Absolute encoder error 2	0		
AL.2E	0	1	1	Control circuit error	0		
AL.2F	0	1	1	Regenerative energy error	0	0	0
AL.30	0	1	1	Pulse output frequency excess	0	0	0
AL.31	0	1	1	Over current 2	0		
AL.32	0	1	1	Control circuit error 2	0		
AL.33	0	1	1	Memory error 2	0		
AL.34	0	0	0	Overload 4	0	0	0
AL.35	1	0	1	STO module abnormal	0	0	0
AL 51	1	0	1	Motor parameter automatic	0	0	0
AL.31	I	0		identification error			
AL.52	1	0	1	Initial magnetic field detection error	0	0	0
AL.53	1	0	1	Motor parameters are not confirmed	0		
AL.54	1	0	1	Motor parameter is out of range	0		
AL.55	1	0	1	Motor magnetic field error	0		
AL.57	1	0	1	Feedback pulse is lost	0		
	1	0	1	Position error excessive after initial	0		0
AL.30	I	0		magnetic field detection		0	0

			Warning elimination method			
	Diaplay		Power	Press SET button in current	Reset	
	Display	Alarm hame	OFF→ON	warning screen	(RES)	
					signal	
	AL.12	Emergency stop				
	AL.13	Forward and reverse limit error				
	AL.14	Software positive limit		After eliminating the cause, it can be automatically		
	AL.15	Software negative limit		Teleaseu.		
	AL.16	Early overload warning				
	AL.17	ABS timeout warning	0	0	0	
	AL 10	Dr. command error	After elimir	nating the cause, it can be au	tomatically	
	AL.19			released.		
		Lindofinad index coordinate	After elimir	nating the cause, it can be au	tomatically	
	AL. IA		released.			
	AL.1B	Position shift warning	0	0	0	
5		Early overload warning 4	After eliminating the cause, it can be automatically			
ninç	AL.10			released.		
Wai	AL 2C	Absolute encoder error 3	After eliminating the cause, it can be automatically			
	7.2.20		released.			
		Encoder battery low voltage	Eliminate the cause, and then cycling the power of			
	7.2.20			servo.		
	AL 61	Parameter group source of PR is out of	0	0	0	
	7.2.01	range				
	AL 62	The parameter number of PR is out of	0	0	0	
	7.2.02	range.				
	AL 63	The writing parameter value using PR is	0	0	0	
	/\L.00	out of range.				
	AL.64	The writing parameter using PR is wrong.	0	0	0	
	AL 67	Motor temperature warping	After eliminating the cause, it can be automatically			
	AL.07	inition temperature warning		released.		

Related caution items:

1: If AL.61 occurs, cycling the power of servo can also eliminate the warning.

2: if an alarm occurs, DO ALM will activate.

3: if a warning occurs, DO WNG will activate.

Causes and corrective actions

AL.01 Over voltage

Alarm cause	Checking method	Corrective action
Main circuit voltage	Use a voltmeter to check whether	Use the correct voltage
exceeds the rated	the main circuit input voltage is	source or connect to the
allowable value.	within the rated allowable voltage	voltage regulator in series.
	value.	
Incorrect power input	Use a voltmeter to check if the	Use the correct voltage
(incorrect power	voltage system complies with the	source or connect to the
system).	specifications.	voltage regulator in series.
Drive hardware failure.	Use a voltmeter to check whether	Send your servo drive
	the input voltage of the main	back to the distributor or
	circuit is within the rated allowable	manufacturer.
	voltage value, and yet the error	
	still occurs.	
Built-in regenerative	Check whether the PD	Wire the short-circuited
resistor or regenerative	short-circuited piece is connected	piece correctly or change
device is	correctly, or whether the	the wiring cable.
disconnected.	regenerative resistor or device	
	wiring is disconnected.	
Burned or damaged of	Check whether the regenerative	When using the internal
the internal	resistor or regenerative related	regenerative resistor,
regenerative resistor or	device is burnt or damaged.	please replace the drive;
regenerative related		When using the
device		regenerative related
		device, please replace it.
The capacity of internal	Refer to section 6.6.1, check the	Increase the capacity or
regenerative resistor or	capacity of regenerative resistor.	add additional
regenerative option is		regenerative device.
insufficient.		

AL.02 Under voltage

Alarm cause	Checking method	Corrective action
The input voltage of	Check if the input voltage wiring	Recheck the voltage wiring.
the main circuit is	for the main circuit is normal.	
lower than the		
allowable rated value.		
No voltage input to the	Use a voltmeter to check if the	Recheck the voltage
main circuit.	voltage of the main circuit is	switch.
	normal	
Incorrect power input	Use a voltmeter to check if the	Use the correct voltage
(incorrect power	power system complies with the	source or connect to the
system).	specifications.	voltage regulator in series.

AL.03 Over-current

Alarm cause	Checking method	Corrective action
Motor wiring error.	Check the wire connection	Followed the wiring
	sequence between the motor and	sequence as described in
	the servo drive.	this manual.
The servo drive output	Check the connection between	Check and make sure that
is short-circuited.	the motor and servo drive and	the wire is not
	make sure that the wire is not	short-circuited. Do not
	short-circuited.	expose the metal part of
		the wiring.
IGBT abnormal.	Check if the temperature of the	Send your servo drive
	heat sink is abnormal.	back to the distributor or
		manufacturer.
Parameter setting is in	Check if the setting value of the	Reset the parameter to
error.	parameter is much greater than	the factory default setting
	the default.	and then modify the
		setting gradually.

AL.04 Regenerative error

Alarm cause	Checking method	Corrective action
Invalid regenerative	Check if the regenerative brake	Send your servo drive
brake transistor.	transistor is short-circuited.	back to the distributor or
		manufacturer.
The regenerative	Check the connection of the	Reconnect the
resistor is disconnected	regenerative resistor.	regenerative resistor.

AL.05 Overload 1

Alarm cause	Checking method	Corrective action
The load is over the	Check if the load is too large.	Increase the motor capacity
rated value		or reduce the load.
continuously.		
Improper parameter	Check if there is any mechanical	Execute auto
setting.	vibration.	acceleration/deceleration
		tuning.
Unstable system.	Acceleration/deceleration time	Increase acceleration/
	constant is too short.	deceleration time.
Incorrect wiring of	Check if the wiring of the UVW	Wiring correctly.
motor and encoder.	and the position encoder cables	
	are correct.	

AL.06 Over speed

Alarm cause	Checking method	Corrective action
The input frequency of	Check whether the input	Correctly set the pulse
the pulse command is	frequency of the pulse command	frequency.
too high.	is too high.	
Improper setting for	Check whether the acceleration	Increase the acceleration
acceleration/decelerati	/deceleration time constant is too	/deceleration time
on time parameter.	short.	constant.
Unstable servo system	Check whether the system has	1. Set proper gain value.
which cause large	been vibrating.	2. if it's not working,
overshoot.		(a)decrease the load
		inertia ratio.
		(b)change the accelerate
		/decelerate time constant.

AL.07 Abnormal pulse command

Alarm cause	Checking method	Corrective action
The frequency of the pulse command is over the rated value.	Use the pulse frequency tester to check the input frequency	Correctly set the pulse frequency
Input pulse command device error	Replace the input pulse command de	evice.

AL.08 Excessive deviation of position control

Alarm cause	Checking method	Corrective action
Improper setting of	Check if the	Increase the acceleration
acceleration/decelerati	acceleration/deceleration time	/deceleration time constant.
on time parameter.	constant is too short.	
Improper torque limit	Check if the torque limit	Increase the torque limit
setting.	parameter(PA05) setting is too	parameter setting value.
	small.	
Gain setting is too low.	Check if the position gain (PB07)	Increase the position loop
	is too small.	gain value.
Excessive external	Check the external load.	Reduce the external load or
load.		re-evaluate the motor
		capacity.

AL.09 Serial communication error

Alarm content: AL.09 occurs when RS485 communication is abnormal.

Alarm cause	Checking method	Corrective action
Incorrect communication	Check if the communication	Correctly set the
protocol setting.	protocol setting is correct.	communication parameter
		value.
Incorrect communication	Check communication	Correctly set communication
address.	address.	address.
Incorrect communication	Check the access value.	Correctly set the
value.		communication value.

AL.0A Serial communication timeout

Alarm cause	Checking method	Corrective action
Servo drive has not received the	Check if the communication	Replace the cable or
communication message for a long	cable is broken or loose.	reconnect the wiring.
time		
Improper parameter setting for	Check the setting value of	Correctly set the
PC23.	PC23.	value of PC23.

AL.0B Encoder error 1

Alarm cause	Checking method	Corrective action
Encoder wiring is	Check if the wiring follows the	Wiring correctly.
incorrect.	instructions in the user manual.	
Encoder connector is	Check the connection.	Re-install.
loose.		
Encoder is damaged.	Check if the motor is abnormal.	Replace the motor.
Encoder wiring is poor.	Check if there is any poor wiring.	Reconnect the wiring.

AL.0D Fan error

Alarm cause	Checking method	Corrective action
Fan stops working.	Turn off the power, replace the fan by yourself, or send your	
	servo drive back to the distributor or manufacturer.	

AL.0E IGBT overheat

Alarm cause	Checking method	Corrective action
The load is continuously over the	Check if servo drive is	Reducing the load, or
rated value or the drive output is	overloaded or motor is	replace the drive with a
short-circuited.	over-current.	larger capacity.
	Check the drive output	
	wiring.	

AL.0F Memory error

Alarm cause	Checking method	Corrective action
Memory data access	Reset parameter or reset power.	If the issue persists after
abnormal.		reset, send the servo back
		to the distributor or
		manufacturer.

AL.10 Overload 2

Alarm cause	Checking method	Corrective action
Mechanical collision.	Check if there is a problem with	Adjust the operation curve
	the rotation cycle.	or install limit switches.
Motor wiring is wrong.	Check the motor wiring.	Wiring correctly.
The System is	Check if the mechanical has high	Reduce the stiffness setting
operating with	frequency noise.	or change to manual
vibration.		adjustment.
Encoder error	Check if encoder is normal.	Replace servo motor.

AL.11 Motor combination error

Alarm cause	Checking method	Corrective action
Motor and drive	Check if they match for each	Use the correct motor
capacity is	other in capacity.	which matches the drive.
inconsistent.		

AL.12 Emergency stop

Alarm content: AL.12 occurs when pressing emergency stop button.

Alarm cause	Checking method	Corrective action
The emergency stop	Check the button position.	Turn on the emergency
button is pressed.		stop button.

AL.13 Forward and reverse limit error

Alarm cause	Checking method	Corrective action
Positive limit switch is	Check the position of the switch.	Turn on the positive limit
triggered.		switch.
Negative limit switch is	Check the position of the switch.	Turn on the negative limit
triggered.		switch.

AL.14 Software positive limit error

Alarm cause	Checking method	Corrective action
In Pr Mode, when the	1.The software positive limit is	Adjust the pulse number of
position command	calculated based on the position	current position command
pulse number	command rather than the actual	to be smaller than the
exceeds the software	feedback position, because the	software positive limit.
positive limit PF86.	command always arrives earlier	
	than the feedback. When this	
	limit protection is activated, the	
	actual position may not exceed	
	the limit, you can set an	
	appropriate deceleration time to	
	achieve the desired effect.	
	2.Refer to the description on	
	PF86.	

AL.15 Software negative limit error

Alarm cause	Checking method	Corrective action
In Pr Mode, when the	1.The software negative limit is	Adjust the pulse number of
position command	calculated based on the position	the current position
pulse number less	command rather than the actual	command to be greater
than the software	feedback position, because the	than the software negative
negative limit PF87.	command always arrives earlier	limit.
	than the feedback. When this	
	limit protection is activated, the	
	actual position may not exceed	
	the limit, you can set an	
	appropriate deceleration time to	
	achieve the expected effect.	
	2.Refer to the description on	
	PF87.	

AL.16 Early overload warning

Alarm cause	Checking method	Corrective action
The load exceeds the	1. Check whether the load is	1. Refer to AL.05 corrective
setting time of the	overloaded.	action.
protection curve	2. Check whether the PA17	2. Increase the setting
*PA17. (Please refer	setting is too low.	value of PA17 or set the
to section 13. 3 of		value to more than 100 to
SDP series manual		disable this function.
for protection curve).		

AL.17 ABS timeout warning

Alarm cause	Checking method	Corrective action
The signal waiting	Delta DIO communication: in	Turn off the ABSE or ABSM
time of absolute	absolute position	signal terminal to release
position	communication, no signal is	the alarm, and check
communication is too	issued (ABSQ) within 5 seconds	whether the communication
long.	after the servo drive DATA is	format of the controller is
	ready(ABSR).	wrong.
	Mitsubishi DIO communication:	
	please refer to section 14.1.5	
	item 3. (Transmission Error).	

AL.19 Pr command error

Alarm cause	Checking method	Corrective action
The position	Incremental system:	Execute homing.
command counter	If in PR mode, the motor keeps running in a	
overflows.	single direction, it will cause the feedback	
	position register overflow and the	
	coordinate system fail to reflect the correct	
	position. This error occurs if the PR	
	absolute positioning command is issued at	
	this time.	
	Absolute system:	
	This error occurs when the absolute	
	positioning command is issued in the	
	following conditions:	
	1. The feedback position register overflows.	
	2. The homing program has not been	
	executed after changing the E-Gear ratio	
	(PA06, PA07).	
	3. Execute absolute position command	
	when DO HOME signal is OFF.	

AL.20 Motor collision error

Alarm cause		Checking method		Corrective action
When the motor	1.	Check if PA15 is valid.	1.	Set PA15 to 0 if you open
current reaches the	2.	Check if PA15 setting is		it by mistake.
value of PA15 and		too low, and if PA16 is too	2.	When setting with actual
the protection time of		small.		torque, if the setting is too
PA16 has run out.				low, it will cause
				malfunction, and if the
				setting is too high, the
				protection function will be
				invalid.

AL.21 Motor UVW cable disconnection

Alarm cause	Checking method	Corrective action
When Motor U,V,W	Check if the Motor U,V,W cable	Reconnect the U,V,W
cable disconnection	is loose.	cables.
is detected.		

AL.22 Encoder communication error.

Alarm cause	Checking method	Corrective action
The encoder has	1. Check if the grounding of	1. Connect the U,V,W ground
three consecutive	motor is normal.	terminal (green wire) to the
CRC code errors	2. Check whether the	heat sink base of the drive
or internal memory	encoder signal line is	2. Please separate the encoder
errors.	separated from the power	cable from the motor power
	line or high current line to	cables and high current
	avoid interference.	cables.
	3. Check whether the wire of	3. Use the wire with shielding
	encoder has an shielding	net
	net.	4. If the issue persists, send it
		back to the distributor or
		manufacturer.

AL.23 Excessive position error of full-closed loop control

Alarm cause	Checking method	Corrective action	
Position control deviation	1. check if PA25 setting	1. Increasing PA25 setting	
pulses exceed PA25	value too small.	value.	
setting value.	2. Check if the connector is	2.Make sure the connector	
	loose or there is other	is firmly connected or there	
	connection problem on the	is no problem when the	
	other mechanical parts.	connector connects to the	
		mechanical parts.	

AL.24 Motor encoder type error

Alarm cause	Checking method	Corrective action
The incremental motor is	1.Check the motor is	To use absolute type of
not able to perform	incremental type or	function, you have to use
absolute type function.	absolute type encode.	absolute motor.
	2.Check parameter PA28.	If absolute type function is
		not needed, please set
		PA28 to 0.

AL.25 Linear scale is disconnected

Alarm cause	Checking method	Corrective action
When PA26 =□□□1 or	Check the communication	cycling the power.
□□□2, and SERVO is ON, if	circuit of Linear scale.	
linear scale is		
disconnected, AL.25		
occurs.		

AL.26 Encoder error 3

Alarm cause	Checking method	Corrective action
Encoder LED light decay	Restart the motor and	If the issue persists, send it
or encoder rotation count	check whether the alarm	back to the distributor or
value is abnormal.	recurs.	manufacturer.

AL.27 Encoder error 4

Alarm cause		Checking method		Corrective action
The internal memory of	1.	Check if the grounding of	1.	Connect the U,V,W
the encoder error.		motor is normal.		ground terminal (green
	2.	Check if the encoder		wire) to the heat sink
		signal line is separated		base of the drive.
		from the power line or	2.	Please separate the
		high current line to avoid		encoder cable from the
		interference.		motor power cables and
	3.	Check whether the wire		high current cables.
		of encoder has a	3.	Use the wire with
		shielding net.		shielding net.
			4.	If the issue persists,
				send it back to the
				distributor or
				manufacturer.

AL.28 Encoder overheat

Alarm cause	Checking method	Corrective action
Encoder operating	Put encoder away from	1. Do not operate in high
temperature is higher than	heat source and do not	temperature
95 ℃.	operate in high temperature	environment and wait
	environment.	for the encoder board
		cool down to room
		temperature.
		2. If the issue persists,
		send it back to the
		distributor or
		manufacturer.
AL.29 Encoder error 5

Alarm cause	Checking method	Corrective action
The move distance of the	Check if the absolute motor	Re-execute homing
absolute position revolution	operating revolution number	and initialize absolute
number is out of range.	is within the range between	coordinate according
	-32768 and +32767.	to chapter 14
		description.

AL.2A Absolute encoder error 1

Alarm cause	Checking method	Corrective action
Encoder backup battery	Check whether the	Replace the battery, and then
voltage is too low.	battery voltage is	re-execute homing and
	lower than 2.45V	initialize absolute coordinate
	(TYP).	according to the description
		of chapter 14 or PA29.
Poor contact or disconnection	1. Check the encoder	Connect or fix the connection
of battery power supply circuit.	wiring.	to make sure the encoder
	2. Check the	power supply is normal, and
	connection	re-execute homing, and then
	between the	initialize absolute coordinate
	battery external	according to the description
	box and drive.	of chapter 14

AL.2B Absolute encoder error 2

Alarm cause	Checking method	Corrective action
The revolution count value of	Restart the motor and	If the issue persists,
absolute encoder is in error.	check whether the alarm	send it back to the
	recurs.	distributor or
		manufacturer.

AL.2C Absolute encoder error 3

Alarm cause	Checking method	Corrective action
Replace the battery when the drive	Do not replace or	Re-execute homing
control power is OFF.	remove the battery when	and initialize absolute
	the drive control power is	coordinate according
	OFF.	to chapter 14 or PA29
		description.
After activating the absolute	1. Install the battery	Execute homing and
function, the absolute position	2. Check the connection	initialize absolute
coordinate initialization has not	between the battery	coordinate according
been completed.	external box and	to chapter 14 or PA29
	drive.	description.
	3. Check the encoder	
	wiring	

AL.2D Encoder battery low voltage

Alarm cause		Checking method	Corrective action
Encoder backup battery voltage is	1.	Check whether the	Replace the battery
too low.		battery voltage is lower	with a new one
		than 3.0V (TYP).	when the drive
	2.	Check if the battery	control power is ON
		voltage is lower than	and re-power on
		3.0V(TYP)	servo drive to
			eliminate the AL.2D.

AL.2E Control circuit error

Alarm cause	Checking method	Corrective action
When the motor is running with	Check whether the servo	Correctly operate
large external load, the servo ON	ON (SON) is operate by	the servo ON (SON)
(SON) state is instantly turned	mistake.	command.
OFF→ON.		
The drive current feedback is	Restart the drive. If the issu	e persists, send your
abnormal.	drive back to the distributor or manufacturer.	

AL.2F Regenerative energy error

Alarm cause	Checking method	Corrective action
When the regenerative	1. Check if the	1. Adjust the
load rate exceeds 100%.	acceleration/deceleration	acceleration
	time is too short.	/deceleration time, or
	2. Check if the frequency of	reduce the frequency
	forward and reverse rotation	of forward and reverse
	is too fast.	rotation.
		2. Press SET button in
		current alarm screen
		display.
		3. Restart the power.

AL.30 Pulse output frequency excess

Alarm cause	Checking method	Corrective action
Detector output error which is	Check the error history to	Follow the
caused by encoder error.	see whether it is	corrective action of
	accompanied with an	AL.0B, AL.22,
	encoder error (AL0B,	AL.26, AL.27.
	AL0C, AL22, AL26, AL27).	
The output pulse exceeds the	Check whether the	Correctly set PA41
hardware allowable range.	following conditions exist:	and PA14: PA41>
	(a) Motor feedback	motor speed and
	speed> PA41.	(motor speed/60)*
	(b) (Motor speed/60) *	the detector output
	detector output pulse	pulse number per
	number per revolution >	revolution <20x10 ⁶
	20x10 ⁶	

AL.31 Over current 2

Alarm cause	Checking method	Corrective action
The drive current feedback is	Restart the drive. If the issue persists, send your	
abnormal.	servo drive back to the distribute	or or manufacturer.

AL.32 Control circuit error 2

Alarm cause	Checking method	Corrective action
FPGA is abnormal.	Restart the drive. If the issue	e persists, send your
	servo drive back to the distr	ibutor or
	manufacturer.	

AL.33 Memory error 2

Alarm cause	Checking method	Corrective action
Cache memory is abnormal.	Restart the drive. If the issue persists, send your	
	servo drive back to the distr	ibutor or
	manufacturer.	

AL.34 Over load 4

Alarm cause	Checking method	Corrective action
continuous use curve	Check if the frequency of the	Increase motor capacity or
which exceeds the	repeatable operation cycle is	reduce operation cycle
drive rated load.	too fast.	frequency.
Unstable system.	Check whether the	Increase the setting value of
	acceleration/deceleration time	acceleration/deceleration time.
	setting is too short.	

AL.35 STO module abnormal

Alarm cause	Checking method	Corrective action
STO safety signal is	Check if the STO safety	Restart the drive after
triggered.	signal is triggered by CN6.	checking. If the issue
	If CN6 is not used, check	persists, send your servo
	whether the connector of	drive back to the distributor
	shipping configuration is	or manufacturer.
	well connected.	

Alarm cause	Checking method	Corrective action
when the motor is	1. Check if input values of	1.Input the actual value and
executing the PL02 Motor	the resolution and pole	then executing auto
Parameter auto	pitch are correct.	detection.
identification function, this	2. Check if the motor is	2.Due to the linear motor
alarm is triggered if the	stuck during detection.	will move 1 pole pitch
friction is too large made	3. Check if the friction	forward or reversely during
the motor unable to run, or	between the motor and	detection. You need to
input values of the	mechanical part is too	leave the motor moving
resolution and pole pitch	large.	distance before detection.
error.	4. Check if linear scale	3.Correct the linear scale
	feedback is normal,	problem.
	disconnected, stick	
	unevenly, or there is noise	
	interference.	

AL.51 Motor parameter automatic identification error

AL.52 Initial magnetic field detection error

Alarm cause	Checking method	Corrective action
When the motor is not using the	1.Check if the feedback is	1.Eliminate
Hall sensor, it will automatically	normal.	feedback error.
detect the magnetic field after	2.Check if the motor	2.Increase PL12(the
power-on. If the magnetic field is	friction is too large.	magnetic detection
not found, this alarm occurs.		current).

AL.53 Motor parameters are not confirmed

Alarm cause	Checking method	Corrective action
	Check PL03.	Check if motor
When PL03=0, if the motor is		parameters is correct,
SERVO ON, the alarm occurs.		if yes, set PL03=1
		and cycling the
		power.

AL.54 Motor parameter is out of range

Alarm cause	Checking method	Corrective action
When the motor executes the PL02	Check if the motor	Check the value of
motor parameter automatic	resistance (PL47),	motor resistance
identification function, the motor	inductance (PL48) values	(PL47) and
resistance (PL47) and inductance	are out of range or are	inductance(PL48).
(PL48) are out of range or are zero,	zero.	
and then this alarm occurs.		

AL.55 Motor magnetic field error

Alarm cause	Checking method	Corrective action
1. The difference between	1. Check whether the Hall	Eliminate the Hall
magnetic field feedback by the Hall	sensor is abnormal or	sensor or feedback
sensor and the control magnetic	interfered.	signal problem, and
field inside the servo is big.	2. Check whether there is	cycling the power.
2. Hall sensor three-phase (UVW)	interference in the	
are all high or all low and the output	feedback signal, which	
time is over1ms.	caused pulses leakage.	

AL.57 Feedback pulse is lost

Alarm cause	Checking method	Corrective action
Activate pulse lost detection, and	1.Check if the feedback is	1.Eliminate
after initial Z phase signal output,	normal.	feedback abnormal.
the pulse interval number between	2. Check if the pulse	2. Set correct pulse
every 2 Z phase output signal is out	interval number which	number to PL39,
of the range.	triggered by 2 Z phase	PL40.
	pulse is fixed value or not.	

Alarm cause	Checking method	Corrective action
During initial magnetic field	1. check if the command is	1.Do not input the
detection, it will check if the	issued right after the	command right after
position deviation is within the	power is applied	apply power to the
range. If not, AL.58 occurs.	2. check if the move	servo.
	distance is too far during	2.Decrease
	initial magnetic detection	PL12(the magnetic
		detection current).

AL.1A Undefined index coordinate

Alarm cause	Checking method	Corrective action
When using the indexing function,	Check whether homing	1. Before operating
you need to execute homing to	has been executed.	the indexing
define the starting point of the		function, make sure
indexing coordinates. otherwise, an		execute homing first
alarm will occur.		to avoid this alarm.
		2. Use DI:Alm reset
		function to clear the
		alarm when alarm
		occurs.
		3. This alarm can
		also be cleared
		when Servo is ON.

AL.1B Position shift warning

Alarm cause	Checking method	Corrective action
When DO: MC_OK is already on,	When DO:MC_OK is	1. Turn on RES
and then MC_OK signal turns off.	already on, it may turn off	signal.
Please refer to PD28 description.	when DO:INP turns off,	2. Press Set button at
	The external force after	alarm display screen.
	motor completed	3. Restart the power.
	positioning may cause	4. Restart SON signal
	the position shift.	

AL.1C Early overload warning 4

Alarm cause	Checking method	Corrective action
The load duration	Check whether the load exceeds	1. Refer to AL.34 overload 4
exceeds the warning	the motor capacity.	alarm instruction.
time of protection		
curve.		

AL.61 Parameter group source of PR is out of range

Alarm cause	Checking method	Corrective action
Parameter group source of PR is	The parameter group	Clear the alarm by
out of range.	setting is out of range	any of the following
	when writing the	solutions:
	parameter by PR	1. Restart the power.
	procedure.	2. Press "SET"
		button at alarm
		display screen.
		3. Turn on RES
		signal.

AL.62 The parameter number of PR command source exceeds the range.

Alarm cause	Checking method	Corrective action
Parameter number source of PR is	The parameter number	Clear the alarm by
out of range.	setting is out of range	any of the following
	when writing the	solutions:
	parameter by PR	1. Restart the
	procedure.	power.
		2. Press the "SET"
		button at alarm
		display screen.
		3. Turn on the RES
		signal.

AL.05 The writing parameter value using I it is out of range.	AL.63	The writing	parameter	value	using PF	R is out	t of range.
---	-------	-------------	-----------	-------	----------	----------	-------------

Alarm cause	Checking method	Corrective action
The writing parameter value of PR	Check whether the writing	Clear the alarm by
command(TYPE=8) is out of range.	parameter value is out of	any of the following
	range when writing the	solutions:
	parameter by PR	1. Restart the
	procedure.	power.
		2. Press the "SET"
		button at alarm
		display screen.
		3. Turn on the RES
		signal.

AL.64 The writing parameter using PR is wrong.

Alarm cause	Checking method	Corrective action
The PR program(TYPE=8) writes	The servo is on or setting	Adjust PR
the parameter during Servo ON.	value is unreasonable	commands and
	when writing the	parameters
	parameter by PR	
	procedure	

AL.67 Motor temperature warning

Alarm cause	Checking method	Corrective action
The motor temperature is too high.	Check the temperature of	The alarm will be
	motor.	released
		automatically after
		the motor
		temperature return
		to normal.

11. Specifications

11.1 Servo drive standard specifications.

200V series specifications

Drive SE	e Mo)P-□	odel Type	010	020	040	075	100	150	200	30)0	
Serv	o M	lotor type	L005 L010	L020	L040	L075	L100	L150	L200	L3	00	
S	ME	-000					M100	M150	M200	M3	00	
				H020	H040	H075	H085			H130	H180	
Mo	tor	conacity	50W	200\//	400\\	750\\/	1.0KW	KW	2K/W	3.0	KW	
INIO		сарасну	100W	20000	40000	75000	850W	1.5KW	211.00	1.3KW	1.8KW	
		Voltage 50/60Hz		Single-p	hase or T	hree-pha	ase 200~	~240VAC	C	Three- 200~2₄	∙phase 40VAC	
		Permissible										
	It	voltage		Single-phase or Three-phase 170~264VAC								
	ndu	variation		170~264VAC								
Main	-	50/60Hz										
circuit		Permissible										
power		frequency					±5%					
		variation										
	ut	Voltage		110V					140V			
	utp	Current	1.0 A	1.8 A	3.2 A	5.8 A	6.4 A	9.4 A	12.1 A	17.	6 A	
	0	Frequency		0~250 Hz 0~167 H					-167 Hz	2		
	Ir	nput voltage	Single-phase 200~240VAC(50/60Hz)									
	F	Permissible			<u>.</u>							
		voltage			Single	-phase 1	70~264	VAC(50/6	oOHz)			
Control		Permissible										
circuit	•	frequency					±5%					
power		variation										
		Power										
	С	onsumption					30					
<u> </u>	ntro	(W)	20 sine ways restition LODE DIAMA sector (O) (DIAMA strike)									
	nuo		``	υψ οπιε Μ	ave recti	Ruilt					-)	
Ъу	IIdíl					Duill		ale)				

Dr	ive Model Type SDP-□□□A2C	010	020	040	075	100	150	200	30	00	
Se	ervo Motor type	L005 L010	L020	L040	L075	L100	L150	L200	L3	00	
	SME-DDDD					M100	M150	M200	M3	300	
			H020	H040	H075	H085			H130	H180	
		50W	50W 1.0KW								
N	Motor capacity		200W	400W	750W	850W	1.5KW	2KW	1.3KW	1.8KW	
		Over cu	rrent, und	der voltag	je, over v	voltage, o	verheat,	overloa	d(electr	on	
			lated hea	it) , fan ei	ror prote	ction, pu	lse comn	nand er	ror prote	ection,	
Pr	otection function	encoder	error pro	otection,	regener	ative erro	or protect	tion, ov	er speed	t	
		protectio	protection, excessive deviation protection, serial communication error,								
		serial communication timeout, motor combination error, motor collision									
		error, motor UVW cable disconnection, control circuit error.									
			(50W~7	50W moto	or) single	turn 24b	it / Multi-	turn 24	bit &16b	oit	
Fe	edback encoder		(850W~3	3KW mot	or) single	e turn 23b	it / Multi-	turn 23	bit &16b	bit	
			HEIDE	ENHAIN E	Endat 2.2	(Increme	ental/abs	olute ei	ncoder)		
C	Communication				RS-485(MODBUS	S), USB				
<u> </u>		STO									
	Safety function	Differential transmission method:									
	Input pulse	Differential transmission method:									
	frequency	500Kpps(low speed) / 8Mpps(high speed)									
	Command pulse		0	pen-cone	or type t	14113111133		. 500кр	p3		
		CCW	pulse tra	in+CW p	ulse trair	i; pulse tr	ain+sign	; AB ph	ase puls	se train.	
de	Command										
om M	source			Ext	ernal pul	se / inter	nal regist	ter			
itrol	Command										
con	smoothing			Low	-pass filte	er / Linea	r / PS-cu	irve			
ion	method										
osit	Command pulse	E	lectronic	gear ratio	A/B time	es A:	1~41943	304, B:	1~4194	304	
–	ratio			(Lim	nited to: 1	/50 < A/E	3 < 3200	00)			
	Deviation excess				±3	revolutio	าร				
	Torque limit	Inter	nal parar	neter or e	external	analog in	put ((0 \sim	+10VD	C/max to	orque)	
	Feed-forward			1			0 0000	,			
compensation											

Dr	ive Model Type SDP-□□□A2C	010	020	040	075	100	150	200	30	00		
Se	Servo Motor type		L020	L040	L075	L100	L150	L200	L3	00		
	SME-					M100	M150	M200	M3	800		
			H020	H040	H075	H085			H130	H180		
		50W				3.0	KW					
Motor capacity		100W	200W	400W	750W	850W	1.5KW	2KW	1.3KW	1.8KW		
	Speed control range	range Analog speed command 1:2000, Internal speed command 1:5000								6000		
	Command		External analog voltage input/Internal register setting									
	source											
e	Command		Low-pas	ss filter / I	_inear ac	celeratio	n and de	celerati	on curve	9		
ontrol mod	smoothing				/ S-cu	irve smoo	othing					
	method						0					
	Analog speed		0~±	10VDC/ra	ated spee	ed (input	impedan	ce 10~	12kΩ)			
ed c	command input	Lood fluctuation 0, 4000/0, 0, 040/										
Spee	Creed shares	Load fluctuation 0~100% maximum ±0. 01%										
	Speed change	Power fluctuation $\pm 10\%$ maximum 0.01%										
	Tale	Ambient temperature fluctuation 0°C~55°C: maximum ±0. 5%(analog										
	Torque limit	speed command) Internal parameter or external analog input $(0 \sim +10)/DC$ /max torque)										
	Bandwidth	Maximum 3KHz										
	Command							• .				
e	source		Exter	rnal analo	og voltag	e input/In	iternal re	gister s	etting			
noc	Command											
rolı	smoothing				Low-pas	s filter sm	noothing					
ont	method											
orque c	Analog torque command input		0∼±10V	DC / max	kimum to	rque (inp	ut imped	lance 10	C∼12kΩ	2)		
Т	Speed limit		Interna	l parame	ter settin	g or exte	rnal anal	og inpu	t setting			
				((0∼+10\	/DC /max	torque)	ue)				

Driv SI	e Model Type DP-□□□A2C	010	020	040	075	100	150	200	30	00	
Son	o Motor type	L005 L010	L020	L040	L075	L100	L150	L200	L3	600	
Serv						M100	M150	M200	M	300	
			H020	H040	H075	H085			H130	H180	
	_	50W				1.0KW			3.0	KW	
Мо	tor capacity	100W	200W	400W	750W	850W	1.5KW	2KW	1.3KW	1.8KW	
		Servo on, forward and reverse rotation limit, pulse deviation elimination,									
		torque c	lirection	option,	speed c	ommand	selectio	on, pos	ition co	mmand	
		selection, forward and reverse rotation command, proportional control									
	Digital Input	switching	g, torque	limit swite	ching, ala	arm reset	, emerge	ency sto	p, contr	ol mode	
t		selection, position command trigger, motor stop, pulse input inhibit event									
ıtpu		trigger command, origin point, homing. E-Cam engaged.									
ut/or		ABZ Line driver output, Z open collector type output.									
inpu		Torque li	mit reach	ed, spee	d limit rea	ached, se	ervo read	ly, zero	speed r	eached,	
ital	Digital Output	target po	sition rea	ached, ta	rget spee	ed reache	ed, servo	alarm,	servo v	varning,	
Digi		homing i	s comple	eted, ove	rload lev	el reache	ed, interr	nal posi	tion is a	attained,	
		position	commar	nd overfl had	ows, sof	tware po	ositive li	mit rea	ched, s	software	
	Analog input	Analog speed command/limit Analog torque command/limit									
		Command pulse frequency, pulse deviation, surrent command/IIMIL									
	Analog output	Command pulse frequency, pulse deviation, current command, DC bus									
		0° ~ 55°C (If the operating temperature is above 45°C									
	Temperature		• 0	1	forced co	oling is re	equired)				
	•			Stor	age: -20-	~65℃ (N	on-freezi	ng)			
nent				Maxim	1um 90%	RH (Nor	n-conden	ising)			
onn	Humidity			Storage:	below 9	0%RH (N	lon-cond	ensing)			
nvir	Installation site		Inde	oors (avo	id direct	sunlight),	no corro	osive va	ipor,		
Ē	Installation site			avoid fla	ammable	gases, f	umes an	d dust.			
	Altitude	Altitude below 1000m									
	Vibration				Maxii	mum 5.9r	m/s²				
Co	oling method	Air cor	IP20.	cooling,		Fa	an coolin	ig, IP20			
	Weight(kg)		1.4			1.7		2	2.6		

Note: *1 when command is at the rated speed, the speed change rate calculation is: (rotational speed with no load - rotational speed with full load) / rated speed.

400V series specifications

Dr	Drive Model Type SDP-□□□A4C		200	300	5	00	700			
Se	ervo N SMP	lotor type	H180	H290	H440	H55	H750			
N	lotor	capacity	1.8K	2.9K	4.4KW	5.5KW	7.5KW			
		Voltage 50/60Hz	Three-phase 380~480VAC							
power	Input	Permissible voltage variation 50/60Hz	Three-phase $323 \sim 528$ VAC							
in circuit		Permissible frequency variation		±5%						
Ma		Voltage	0~240VAC							
	output	Current	8.4 A	11.9 A	16.5 A	20.8 A	27.2 A			
	Frequency				0~125 H	z				
LINPUt voltage					24VD	С				
trol circui power	P	Permissible voltage variation	21.6~26.4VDC							
Con	cons	Power sumption (W)	30							
C	Contro	ol method	3φ sine wave rectification, IGBT-PWM control (SVPWM)							
	Dynar	nic brake		Βι	uilt-in(sof	tware)				
Protection function			Over current, under voltage, over voltage, overheat, overload(electronic accumulated heat), fan error protection, pulse command error protection, encoder error protection, regenerative error protection, over speed protection, excessive deviation protection, serial communication error, serial communication timeout, motor combination error, motor collision							
Fe	edba	ck encoder	(2KW~7.5KW motor) single turn23bit /Multi-turns23bit &16bit HEIDENHAIN Endat 2.2 (Incremental type/absolute type encoder)							
C	Comm int	unication erface	RS-485(MODBUS), USB							

Drive Model Type SDP-□□□A4C		200	300	5	00	700				
Se	ervo Motor type SMP-□□□□	H180	H290	H440	H550	H750				
r	Motor capacity	1.8K	2.9K	4.4KW	5.5KW	7.5KW				
	Safety function	STO								
	Input pulse	Line driver: 500Kpps(low speed)/8Mpps(high speed);								
	frequency		Open	collector	: 500Kpp	S				
	Command pulse	CCV	V pulse train +C	W pulse	train; pul	se train + sign;				
0	mode		AB p	ohase pu	lse train.					
por	Command source	E	xternal pulse co	ontrol / In	ternal reg	ister setting				
ntrol n	Smoothing method	Low-pass filter / Linear / PS-curve smoothing								
CO	Command pulse	Electronic	gear ratio A/B	times	A: 1~419	4304, B: 1~4194304				
itior	ratio	(Limited to: 1/50 < A/B < 320000)								
Pos	Deviation excess		:	±3revolu	tions					
	Torque limit	Internal parameter setting or external analog input setting $(0 \sim \pm 10)$								
	Feed forward		(0,4110)	DO/maxi						
	compensation	Internal parameter setting0~200%								
	Speed control range	Analog spe	ed command 1	:2000, In	ternal spe	eed command 1:5000				
	Command source	Exte	rnal analog volt	age inpu	t/Internal	register setting				
	Smoothing	Low-p	oass filter / Line	ar accele	eration/de	celeration curve				
ode	method		/ S	-curve sr	noothing					
ntrol me	Analog speed command input	0~±	10VDC/rated s	peed(inp	ut impeda	ance 10~12kΩ)				
cor		L	oad fluctuation	0~100%	maxim	um ±0.01%				
eed	Speed change		Power fluctuati	on ±10%	maxim	um 0.01%				
Sp	rate*	Ambient terr	perature fluctua	ation 0°C ∕	~55° C∶ma	aximum ±0. 5%(analog				
			sp	eed com	mand)					
	Torque limit	Internal para	meter setting or	r externa	l analog ir	nput setting(0~+10VDC				
		/maximum torque)								
	Bandwidth	ndwidth Maximum 3KHz								

Dr	ive Model Type	200	300	5	00	700				
Se	ervo Motor type	H180	H290	H440	00 700 H550 H750 5.5KW 7.5KW Internal register setting smoothing nput impedance 10~12kΩ) rernal analog input setting num speed) mit , pulse deviation elimination reset, emergency stop, contra ain switching, position command command, proportional contra reset, emergency stop, contra ain switching, position command or stop, pulse input inhibit, even Cam engaged. open collector output hed, Servo ready, Zero speed et speed reached, Servo alarm verload level reached, Internativerflows, Software positive lim log torque command/limit, or, current command, DC bus motor torque value C 5°C, forced cooling is required) Non-freezing) n-condensing) Non-condensing) Non-condensing) Non-condensing) no corrosive vapor, iumes and dust. 0 m					
Ν	Notor capacity	1.8K	2.9K	800 500 700 290 H440 H550 H750 29K 4.4KW 5.5KW 7.5KW alog voltage input/Internal register setting Low-pass filter smoothing Maximum torque(input impedance 10~12kΩ) neter setting or external analog input setting (0~±10VDC/maximum speed) reverse rotation limit , pulse deviation elimination, , speed command selection, position command reverse rotation command, proportional control switching, alarm reset, emergency stop, control r ratio selection, gain switching, position command mand trigger, motor stop, pulse input inhibit, event point, homing. E-Cam engaged. e driver output, Z open collector output speed limit reached, Servo ready, Zero speed on reached, Target speed reached, Servo alarm, ng completed, Overload level reached, Internal tion command overflows, Software positive limit rse limit reached. ormand/limit, Analog torque command/limit, quency, pulse error, current command, DC bus ervo motor speed, motor torque value						
	Command source	Exte	rnal analog volta	age inpu	t/Internal	register setting				
ontrol le	Smoothing method		Low-pa	ass filter	smoothin	g				
rque c	Analog torque command input	0~±10	VDC / Maximum	torque(input imp	edance 10~12kΩ)				
P	Speed limit	Interna	l parameter sett (0~±10V	ing or e> DC/maxi	tternal an mum spe	alog input setting ed)				
out/output	Digital Input	Servo on, forward and reverse rotation limit, pulse deviation elimination, torque direction option, speed command selection, position command selection, forward and reverse rotation command, proportional control switching, torque limit switching, alarm reset, emergency stop, control mode switching, E-Gear ratio selection, gain switching, position command selection, position command trigger, motor stop, pulse input inhibit, event trigger command, origin point, homing. E-Cam engaged. ABZ Line driver output, Z open collector output								
Digital in	Digital Output	ABZ Line driver output, Z open collector output Torque limit reached, speed limit reached, Servo ready, Zero sp reached, Target position reached, Target speed reached, Servo ala Servo warning, Homing completed, Overload level reached, Inte position attained, Position command overflows, Software positive								
	Analog input	Analog sp	beed command/	limit, Ana	alog torqu	e command/limit,				
AI/AO	Analog output	Command p	ulse frequency, tage, servo moto	pulse err or speed	or, curren , motor to	t command, DC bus rque value				
	Temperature	(If the operatin) g temperature is Storage: -20	$\mathbb{C} \sim 55^{\circ}$ s above 4° $\sim 65^{\circ}\mathbb{C}$ (°C 15°C, forc Non-freez	ed cooling is required) zing)				
nment	Humidity		Maximum 90% Storage: below 9	6 RH (No 90%RH (on-condei Non-cond	nsing) densing)				
Enviro	Installation site	Indo	ors (avoid direct avoid flammabl	t sunligh [:] e gases,	i), no corr fumes ar	osive vapor, nd dust.				
	Altitude		Be	low 1,00	0 m					
	Vibration		Max	imum 5.	9m/s ²					
С	ooling method		Fan	cooling	IP20.					
	Weight(kg)			5.3						

11.2 Interface and out dimensions of the servo drive

200V series

		Shihlin SDP			
Item	A frame	B frame	C frame		
	100~400W	0.75~1kW	1.5~3kW		
H (mm)	162	162	162		
L (mm)	50	70	85		
D (mm)	150	170	190		
Screw hole	2-M5	3-M5	3-M5		

400V series

	Shihlin SDP
Item	D frame
	2~7KW
H (mm)	245
L (mm)	123.5
D (mm)	205
Screw hole	4-M5

11.3 Dimensions of servo drive

200V AC system

SDP-010A2C, SDP-020A2C, SDP-040A2 C(100W~400W)

Unit[mm]

200VAC system

SDP-075A2C, SDP-100A2C(750W, 1KW)

Unit[mm]

200VAC system

SDP-150A2C, SDP-200A2C, SDP-300A2 C(1.5KW~3KW)

Unit[mm]

400VAC system

SDP-200A4C, SDP-300A4C, SDP-500A4C, SDP-700A4C(2KW~7KW)

Unit[mm]

11.4 SME series servo motor general specification

Motor type			L005	L010	L020	L040	L075				
Flange num	ber	mm	□40		□60		□80				
Rated outpu	it capacity	W	50	100	200	400	750				
Rated torqu	e (Note 1)	Nm	0.16	0.32	0.64	1.27	2.4				
Maximum to	orque	Nm	0.48	0.96	1.92	3.81	7.2				
Rated speed	d	rpm	3000								
Maximum s	beed	rpm	6000								
Rated curre	nt	A	0.85	0.85	1.7	2.8	5.8				
Maximum ci	urrent	А	2.7	2.7	5.2	9.0	18.5				
Rotor iner	tia <i>J</i> (x10 ⁻⁴)	kg-m	0.0295	0.0518	0.161	0.277	1.07				
(Note 2)		2	(0.0299)	(0.0523)	(0.178)	(0.294)	(1.11)				
Power at co torque	ontinuous rated	kw/s	8.6	53.3							
Mounting a size	luminum plate	mm	250 x 250 x 6	50 x 250 x 6							
Insulation cl	ass		CE(B) & UL(A	N)							
Insulation in	npedance		100MΩ @ DC	C500V							
Insulation st	rength		60sec @ AC1	500V							
Encoder res	olution		Single turn resolution24bit (16,777,216 Pulse); Multi-tun16bit (65,536 Turn)								
Motor struct	ure (Note 3)		Full-closed and Air convection cooling(IP rating IP65)								
Vibration gra	ade		V-15								
t	Temperature		0°C ~40°C (No	on- freezing) /	Storage: -15°C	C∼70°C (Non- 1	freezing)				
men	Lumidity		Below 80%RH	H (Non-conder	nsing)						
ron	Turnuty		/ Storage: bel	ow 90%RH (N	on-condensin	g)					
envi	Altitude		Altitude below	/ 1000m							
uo	Environment		Indoors (avoid	d direct sunligh	nt), no corrosiv	/e vapor , avoi	d flammable				
erati	restrictions		gases, fumes	and dust.							
Ope	Vibration resistant		5G								
ole	Fd	mm	20		25		35				
allowat lote 5)	Radial Ioading Fr	N	68.6		245		392				
Axial load (N	Axial loading Fa	N	39.2 98 147								

11.4.1 Standard specification of low capacity servo motor

Motor	type□			L005	L010	L020	L040	L075
		Input voltage	V	DC: 26.4V~ 2	21.6V			
		Brake holding torque	Nm	0.3		1.3		2.4
ation		Power consumption	W	6.3		7.9	8.6	
Brake specifica	Vote4)	Current consumption	A	0.24		0.32	0.35	
	U)	impedance @20℃	Ω	92.4		75.4	67	
		Brake release time	ms	20		30		50
		Brake close time	ms	20		20		20
Motor weight(Note 2)		Kg	0.33 (0.55)	0.45 (0.67)	0.85 (1.23)	1.23 (1.59)	2.24 (2.87)	

Note 1: in the vertical lift or reciprocating mechanism application, please make sure the average load rate is below 75%. (refer to section 12.1 for S-T curve)

Note 2: () is the rotor inertia and weight with electromagnetic brake.

Note 3: the motor IP65 protection test is for the motor body, excluding the output shaft and the connector itself.

Note 4: the electromagnetic brake is used for holding when the mechanism stops, and it cannot be used for braking during operation.

Note 5: refer to note 5 in Section 11.4.3.

Motor type	000		L100	L150	L200	L300	M100	M150	M200	M300
Flange num	ber	mm	□130					·	□176	
Rated outpu	it capacity	W	1000	1500	2000	3000	1000	1500	2000	3000
Rated torqu	e (Note 1)	Nm	4.78	7.16	9.55	14.3	4.78	7.16	9.55	14.3
Maximum to	orque	Nm	14.4	21.6	28.5	43.0	14.4	21.6	28.5	43.0
Rated spee	d	rpm	2000		•	•		·	·	
Maximum s	peed	rpm	3500							
Rated curre	nt	А	5.8	8.5	11	16	5.8	8.5	11	16
Maximum c	urrent	А	17.4	25.5	33	48	17.4	25.5	34.7	48
Rotor iner	tia <i>J</i> (x10⁻⁴)	ka m ²	6.1	8.8	11.5	16.7	10.3	15.0	32.1	61.2
(Note 2)		ку-тт	(8.0)	(10.7)	(13.5)	(18.7)	(12.2)	(17.0)	(42.4)	(71.6)
Power at co torque	kw/s	37.6	58.3	79.3	122.9	22.1	34.2	28.4	33.5	
Mounting a size	luminum plate	mm	300 x 30	00 x 12					400 x 40)0 x 20
Insulation cl	ass		CE(F) please r	3.3 0.3 11 10 3.5 0.3 11 10 17.4 25.5 33 48 17.4 25.5 34.7 48 5.1 8.8 11.5 16.7 10.3 15.0 32.1 61.2 8.0 (10.7) (13.5) (18.7) (12.2) (17.0) (42.4) (71.4) 87.6 58.3 79.3 122.9 22.1 34.2 28.4 33.5 $800 \times 300 \times 12$ 400 $\times 400 \times 2$ $400 \times 400 \times 2$ $400 \times 400 \times 2$ $200 \times 200 \times 2$ $200 \times 400 \times 2$ $200 \times 200 \times 200 \times 2$ $200 \times 200 \times 200 \times 200 \times 200 \times 200 \times 200 \times 200$				be used,		
Insulation in	npedance		100MΩ @ DC500V							
Insulation st	rength		60sec @	DAC1500	V					
Encoder res	olution		Single to (65,536	urn resolu Turn)	ition 23bi	t (8,388,6	08 Pulse);Multi-t	urn resolu	ution16bit
Motor struct	ure (Note 3)		Full-clos	sed and A	ir convec	tion cool	ing(IP rat	ing IP65)		
Vibration gra	ade		V-15							
	Temperature		0°C ~40)°C (Non- ⁻	freezing)	/ Storage	e: -15℃ ~	70°C (No	n- freezin	g)
onment	Humidity		Below 8 /Storage	0%RH(N e: Below 9	on-conde 90%RH(N	ensing) Non-cond	ensing)			
nvire	Altitude		Below 1	,000m at	ove sea	level				
ation e	Environment restrictions		Indoors avoid fla	(avoid di ammable	rect sunli gases, fu	ght), no c imes and	orrosive dust.	vapor,		
Oper	Vibration resistant		2.5G		<u> </u>		-			

11.4.2 Standard specification of medium capacity servo motor

Mot	or 1	type□			L100	L150	L200	L300	M100	M150	M200	M300	
e			Fd	mm	50					·	70	·	
allowab	load	ote 5)	Radial loading Fr	Ν	490						980		
Axial		Z	Axial loading Fa	Ν	196						392		
			Input voltage	V	DC 24V -	± 10%							
	ation		Brake holding torque	Nm	16		45						
			Power consumption	W	23		34						
:	pecifica	lote4)	Current consumption	A	0.95						1.41		
-	brake s	Z	Impedance @20℃	Ω	25						17		
			Brake release time	ms	95	95							
		<u> </u> 	Brake close time	ms	85						30		
Mot	orv	woiah	ot(Note 2)	Ka	5.2/5.6	6.5/6.9	7.7/8.1	10.2/10.6	5.6/5.8	6.9/7.2	10.5/11.0	15.3/15.8	
Motor weight(Note 2)		Ny	(7.0/7.4)	(8.3/8.7)	(9.5/9.9)	(12.0/12.4)	(7.4/7.6)	(8.7/9.0)	(15.8/16.3)	(20.6/21.1)			

Note 1: in the vertical lift or reciprocating mechanism application, please make sure the average load rate is below 75%. (refer to section 12.1 for S-T curve)

Note 2: () is the rotor inertia and weight with electromagnetic brake.

Note 3: the motor IP65 protection test is for the motor body, excluding the output shaft and the connector itself.

Note 4: the electromagnetic brake is used for holding when the mechanism stops, and it cannot be used for braking during operation.

Note 5: refer to note 5 in Section 11.4.3.

11.4.3 High inertia motor specification

Motor type	e		H020	H040	H075	H085	H130	H180		
Flange nu	umber	mm		60	□80		□130			
Rated out	put capacity	W	200	400	750	850	1300	1800		
Rated tore	que (Note 1)	Nm	0.64	1.27	2.4	5.4	8.3	11.5		
Maximum	torque	Nm	2.24	4.45	8.4	13.8	23.2	28.7		
Rated spe	ed	rpm		3000			1500			
Maximum	speed	rpm		6000			3500			
Rated cur	rent	А	1.7	3.0	5.8	7.2	17.6			
Maximum	current	А	5.95	10.5	20.3	20.1	48.3			
Rotor ine	ertia <i>J</i> (x10 ⁻⁴)	1 m m ²	0.354	0.619	1.655	13.01	19.82	26.42		
(Note 2)		кg-m	(0.371)	(0.636)	(1.713)	(14.91)	(21.72)	(28.32)		
Power at continuous rated		lau/o	11 50	26.15	24.22	00.51	24.56	40.7		
torque		KW/S	11.00	20.15	34.33	22.01	34.30	49.7		
Mounting	aluminum	mm		250 v 250	N A	300 x 300 x 12				
plate size				200 x 200	X 0					
Insulation	class		CE(B)			CE(F)				
Insulation	impedance		100MΩ @ DC500V							
Insulation	strength		60sec @	∮ AC1500	V					
			Single to	urn resol	ution 24bit	Single tu	irn resolu	tion 23bit		
Encoder r	esolution		(16,777,2	216 Pulse));	(8,388,608	Pulse);			
			Multi-turn	16bit (65	,536 Turn)	Multi-turn 1	6bit (65,536	រ Turn)		
Motor stru	ucture(Note 3)		Full-close	ed and Air	convection	cooling(IP r	ating IP65)			
Vibration	grade		V-15							
	Temperature		0 °C to 40	0 °C/ stora	age: -15 °C	to 70 °C, no	n-freezing			
Jme	Humidity		80 %RH	maximum	/ storage: 9	0 %RH max	kimum, non-	condensing		
viror	Altitude		Altitude b	elow 100	0m					
en	Environment		Indoors	(avoid di	rect sunlig	ht), no coi	rrosive vap	or , avoid		
ation	restrictions		flammabl	e gases, f	iumes and d	lust.				
Opera	Vibration resistant		5G			2.5G				

Motor	type	e 0000		H020	H040	H075	H085	H130	H180	
ole		Fd	mm	2	5	35		50		
allowat	lote 5)	Radial loading Fr	Ν	24	45	392		490		
Axial	load(N	Axial loading Fa	N	9	8	147		196		
		Input voltage	V			DC 24	4V ± 10%			
		Brake holding torque	Nm	1.3		2.5	16			
ation	Power consumption	W	7.9		8.0		23			
pecifica	lote4)	Current consumption	A	0.32		0.33		0.95		
Brake s	Z	impedance @20℃	Ω	75	5.4	72.0	25			
		Brake release time	ms	3	30		95			
	 	Brake close time	ms	2	0	20		85		
Motor	Motor weight(Note 2)		Ka	0.86	1.25	2.27	5.1	6.6	7.8	
		g(,	د	(1.23)	(1.63)	(3.10)	(6.9)	(8.4)	(9.6)	

Note 1: in the vertical lift or reciprocating mechanism application, please make sure the average load rate is below 75%. (refer to section 12.1 for S-T curve)

Note 2: () is the rotor inertia and weight with electromagnetic brake.

Note 3: the motor IP65 protection test is for the motor body, excluding the output shaft and the connector itself.

Note 4: the electromagnetic brake is used for holding when the mechanism stops, and it cannot be used for braking during operation.

Note 5: the diagram for the shaft permissible load is as follows.

Mot	or series		SMP								
Motor type			H180	H290	H440	H550	H750				
Flange number		mm	□130		□1	80					
Rated output capa	icity	W	1800	2900	4400	5500	7500				
Rated torque(Note	e 1)	Nm	11.5	18.6	28.4	35	48				
Maximum torque		Nm	28.7	45.1	71.1	87.6	119				
Rated speed		rpm			1500						
Maximum speed		rpm			3000						
Rated current		А	8.4	11.9	16.5	20.8	27.2				
Maximum current		А	20	28	40.5	52	69				
Rotor inertia <i>J</i> (x1)	0 ⁻⁴) (Note 2)	kg-m ²	26.1 (28.1)	46 (54.5)	125 (134)						
Insulation class				CE(F)							
Insulation impeda	nce	100MΩ @ DC500V									
Insulation strength)		60sec @ A	C1500V							
Encoder resolution			Single turn Multi-turn r	resolution2 esolution16	3bit (8,388,6 bit (65,536 T	608 Pulse); ſurn)					
Motor structure(No		Full-closed	and Air conv	vection cooli	ng(IP rating	IP65)					
	Fd	mm	55 79 113								
Axial allowable	Radial Ioading Fr	Ν	880	1:	270	1556					
load(Note 5)	Axial loading Fa	Ν	320	3	95	4	72				
	Input voltage	V			DC 24V						
	Brake holding torque	Nm	≧19.6	≧	44	\geq	74				
Brake specification	Power consumption	W	19.5	18	3.3	2	5				
(Note4)	Operating voltage	@20 °C	≦DC16.8 V	≦DC	19.2V	≦DC	19.2V				
	Release voltage	@20 °C	\ge DC1.5V	≥DC	0.5V	≥D	C1V				
Motor weight(Note	e 2)	Kg	8.8 (10.76)	13 (19.5)	17.5 (24)	22 (27.8)	29.5 (35)				

11.4.4 (400V)High inertia motor specification

Note 1: in the vertical lift or reciprocating mechanism application, please make sure the average load rate is below 75%. (refer to section 12.1 for S-T curve)

Note 2: () is the rotor inertia and weight with electromagnetic brake.

Note 3: the motor IP65 protection test is for the motor body, excluding the output shaft and the connector itself.

Note 4: the electromagnetic brake is used for holding when the mechanism stops, and it cannot be used for braking during operation.

Note 5: the diagram for the shaft permissible load is as follows.

11.5 Motor dimensions

11.5.1 Dimensions of 300rpm motor.

Model				Di	mens	ion(m	חm)				
model	WF	ψS	ψF	LA	LB	LF	LR	MH	LM	FC	HB
SME-L005(B)	40	ω ^{β 0}	<i>w</i> 30 ⁰	25	25	55	21	22	64.5 (99.2)	46	2
SME-L010(B)	40	ΨΟ _0.009	φ30 _0.03	2.0	20	0.0	2.	02	80 (114.7)	40	2-ψ4.0
SME-L020(B) SME-H020(B)	60	<i>w</i> 14 ⁰	~50 ⁰	0	20	6 F	25	40	77 (112)	70	4
SME-L040(B) SME-H040(B)	60	$\varphi_{14} = 0.011$	$\psi 50_{-0.03}$	З	30	6.5	25	42	97 (132)	70	4-ψ5.8
SME-L075(B)	80	<i>(</i> 019 ⁰	(a70 ⁰	2	40	7.5	24.5	52	101.2 (140.2)	00	46 6
SME-H075(B)	00	Ψ··· -0.013	Ψ/Ο -0.03	5	3 40 7.5 3		54.5	JZ	101.2 (145.5)	30	4-ψ6.6

LM (): length of model with brake

11.5.2 Dimensions of 2000rpm motor

					Dim	ensio	n(mm	ו)				
Model	WF	ψS	ψF	LA	LB	LF	LR	LP	ΜН	LM	FC	HB
SME-L100								55.5		127 (161)		
SME-L150								70		141.5 (175.5)		
SME-L200								84.5		156 (190)		
SME-L300	130	$\varphi 24 \ ^{0}_{-0.013}$	$\varphi 110 \ _{-0.035}^{0}$	3	55	11	50	113.5	113	185 (219)	145	4-ψ9.0
SME-M100								55.5		127 (161)		
SME-M150								70		141.5 (175.5)		
SME-M200	470	φ 114.3 $^{0}_{-0.025}$		78	18 5	74	61.5	130	139 (189)	200	<i>4</i> -ш13 5	
SME-M300	176 $\varphi^{35} = 0.01$				5	18.5	5 74	91.5	139	169 (219)	200	4-ψ13.5

LM (): length of model with brake

11.5.3 Dimensions of 1500rpm motor

Model		Dimension(mm)											
	WF	ψS	ψF	LA	LB	LF	LR	LP	ΜН	LM	FC	HB	
SME-H085(B)								55.5		127			
	-	130 $\varphi^{24} {}^{0}_{-0.013}$	$arphi$ 110 $^{0}_{-0.035}$	3	58	58 11	1 40			(161)	-	4-ψ9.0	
SME-H130(B)	130							70	113	141.5	145		
	-									156			
SME-H180(B)								84.5		(190)			

LM (): length of model with brake

11.5.4 (400V) dimensions of 1500rpm motor

Model	Dimension(mm)										
	WF	ψS	ψF	LA	LB	LM	FC	ψHB	LP	MH	
SMP-H180(B)	130	$\Psi 24^{0}_{-0.013}$	$\Psi 110^{0}_{-0.022}$	6	55	184.9 (217.4)	145	4-ψ9.0	128.5	104.5	

LM (): length of model with brake.

Model	Dimension(mm)											
	WF	ψS	ψF	LA	LB	LM	FC	ψHB	LP	MH		
SMP-H290(B) SMP-H440(B)	190	$\psi 35_0^{+0.01}$	- ψ114.3 ⁰ _{-0.025}	3.2 -	79	173.3	200	4-ψ13.5	118.5			
						(231)						
						197.3			142.5			
						(255)				10E E		
	100	$\psi 42^{0}_{-0.016}$				236.3			173.5	133.3		
SMP-H000(B)	-					(278)			(172.5)			
SMP-H750(B)						282.3			219.5			
						(324)			(218.5)			

LM (): length of model with brake

11.5.5 Dimension of servo motor keyway

D type keyway applicable model: L005(B) / L010(B)

General keyway

Madal	Dimension								
Model	QL	QK	W	Т	U	Y			
L020(B) \ L040(B)	2	20	۶ ⁰	5	3	M4x depth 15			
H020(B) \ H040(B)	3		5 _0.03						
L075(B)	5	25	6 ⁰	6	25	MEX dopth 20			
H075(B)			0 -0.03	0	5.5	MSX depth 20			
L100(B) \ L150(B) \ L200(B) \									
L300(B)	5	35	8 ⁰ _{-0.036}	7	4	M8x depth 20			
M100(B) \ M150(B)									
M200(B) \ M300(B)	5	55	$10 \ ^{0}_{-0.036}$	8	5	M8x depth 20			

Madal		Dimension						
Model	QK	W	Т	U	Y			
H085(B) \ H130(B) \ H180(B)	25	8 ⁰ _{-0.036}	7	4	M5x depth 12			

Model	Dimension								
	QK	W	Т	U	Y				
SMP-H180(B)	29	8	7	4	M6x depth 20				
SMP-H290(B) \ H440(B)	65	10	0	F	M12x depth 25				
SMP-H550(B) \ H750(B)	96	12	0	5	M16x depth 32				

11.6 Electromagnetic Interference Filter (EMI Filter)

To comply with EMI command of EN specification, it is recommended to use the following filters:

Servo drive	Recommended filter			
SDP-010A2C				
SDP-020A2C	NF31205/05			
SDP-040A2C	NF312C10/05			
SDP-075A2C	NE212020/05			
SDP-100A2C	NF312020/05			
SDP-150A2C				
SDP-200A2C	NF312C30/05			
SDP-300A2C				
SDP-200A4C	NE212020/05			
SDP-300A4C	1 INF312620/05			
SDP-500A4C				
SDP-700A4C	INF312030/05			

- ★ Filter is optional purchase item.
- ★ The use of the filter needs to consider the site conditions, check whether there is electromagnetic compatibility interference before installation.

The following schematic diagram describes the wiring of the servo drive with EMI filter to three-phase power:

- ★ If the power is single-phase, there will be no T terminal.
- ★ Ground the EMI Filter.

11.7 EMI interference countermeasure

The following figure shows the recommended wiring diagram of the servo drive on the distribution board:

Figure 1: recommended wiring diagram

The selection of motor power cable and the installation of related accessories are the key to affect electromagnetic interference. To reduce the noise interference, the following items should be paid attention to when wiring on the distribution board.

- 1. The EMI filter and the servo drive should be installed on the same wiring metal panel, and the wiring should be as short as possible.
- 2. The servo drive and EMI filter installed on the wiring metal panel must be fixed tightly, and the two fixed metal panel contact surface should be in good contact (the isolation paint needs to be removed).
- 3. Use motor power cables with isolation nets, the one with double-layer isolation nets is preferred.
- 4. The isolation nets at both ends of the motor power cable should be grounded with the largest contact area (U-shaped metal pipe clamp).
- 5. The U-shaped metal piping clamp and the metal plate should be fastened with screws (the isolation paint needs to be removed) to ensure good contact, See the following figure 2.
- 6. The power distribution box and the door should have good conductivity, a thick ground wire or metal isolation net should be installed between the doors to avoid interference.
- 7. The magnetic buckle must be wound on the power cable (except the ground wire) with more than one circle and should wire as close as possible to the servo drive side to prevent common mode noise interference.
- 8. The power cable and I/O cable should be kept as far away as possible, and should not wiring in parallel direction.
- 9. When installing the metal part of the motor, use a thick ground cable or metal isolation net to connect the ground terminal.

Figure 2: U-shaped metal pipe clamp

12. Features

12.1 Motor T-N curve/S-T curve

 Motor performance with three-phase 200V power: torque feature will be weaker when voltage is insufficient.

[SME-L005]

[SME-L010]

40

[SME-L020]

[SME-L040]

[SME-L075]

[SME-L100]

[SME-L150]

[SME-L200]

[SME-L300]

[SME-M100]

[SME-M150]

[SME-M300]

[SME-H020]

[SME-H040]

[SME-H075]

[SMP-H085]

[SME-H130]

[SME-H180]

★ This feature is applicable to three-phase 200-240V power.

[SMP-H180]

[SMP-H290]

[SMP-H440]

[SMP-H550]

[SMP-H750]

★ This feature is applicable to three-phase 380~480V power.

12.2 Overload protection feature

Overload protection is to prevent the servo motor from operating under overload conditions.

The Causes of overload are as follows:

- (1) The inertia ratio is too large.
- (2) Acceleration /deceleration time which cannot be reached theoretically is set when loaded.
- (3) The motor operating torque exceeds the rated range and the operating time is too long.
- (4) Large servo gain setting causes resonance in the motor and yet the motor keeps running.
- (5) Incorrect wiring of the power and encoder cables.

If the operating servo motor may exceed the rated torque during operation, you can refer to the chart of Load and Operating Time as follows:

SME-L005-010 Overload protection pattern

When the load reaches 300%, the operation time is 2.46 seconds.

When the load reaches 300%, the operation time is 3.33 seconds.

When the load reaches 300%, the operation time is 5.51 seconds.

When the load reaches 300%, the operation time is 5.51 seconds.

When the load reaches 300%, the operation time is 5.51 seconds.

When the load reaches 300%, the operation time is 5.51 seconds.

13.Absolute servo system

Absolute servo system includes servo drive, absolute servo motor and absolute encoder cable (including battery box). The absolute position detection system does not store the data in the PLC controller, it detects the absolute position of the machine and store the data by battery power. Therefore, as long as the origin is set during installation, operation can be easily resumed even if power outage or breakdown.

If the drive has enabled the relevant parameters of the absolute system, an absolute servo motor must be used. If using the incremental servo motor, an alarm AL.24 will occur.

The absolute motor model description is as follows:

SME-□○○○ΔΔΜ□□□

-M: Absolute servo motor

	When [Absolute position lost] or [Absolute position overflows] occurs, the
	origin setting needs to be performed again.
	Please put the battery in the battery box before using it to prevent unexpected
Noto	factors such as battery is short-circuited.
Note	When using an absolute servo motor, please make sure that the motor speed
	is lower than 50 rpm at the moment of the power is applied.
	After the drive is powered off and in battery mode, the speed should not
	exceed 50 rpm in battery mode.

Focus	The absolute position will vanish when the battery is removed, in this case,
	you must set the origin before running

Restricted items:

Some operation conditions described below are not suitable to perform the absolute system.

- (1) Speed control mode and torque control mode.
- (2) Switching control mode.
- (3) Rotating axis, infinite operation cycle positioning.

- (4) Change the E-Gear ratio after setting the origin.
- (5) Alarm code output occupies the DO hardware.

How to replace the battery

- (1) When the drive displays alarm AL.2D, which means the voltage is too low, please replace the battery immediately to avoid data loss.
- (2) When the battery voltage is less than 2. 45V, AL.2A alarm will occur and the motor position data has lost, the homing must be performed after the battery is replaced.

☆☆☆ Attention!!!

It is recommended to replace the battery when power is applied on the drive and the motor is stopped, which is to avoid absolute position data loss.

System initialization

- (1) Install absolute motor and battery.
- (2) Set PA28 to 1 which is to activate the absolute system, and then restart the drive.
- (3) [AL.2A Absolute encoder abnormal 1] alarm will occur after power-on, you can clear the alarm by cycling the power.
- (4) Absolute position loss [AL.2C Absolute Encoder error 3] alarm will occur after power-on, and it is necessary to reset the absolute system origin to clear this alarm. The method is as follows

(a) Set PA29 to 1 to complete the coordinate initialization.

(b) The absolute coordinate system will be reset after the homing is completed in PR mode.

Cautions:

In the absolute system, the position movement has certain restrictions. When the motor revolution number exceeds the range of $-32768 \sim +32767$, an alarm AL.29 will occur.

Pulse number calculation

The motor maximum countable revolution number range is -32768 ~ +32767. If it exceeds this range during operation, an overflow (AL.29) alarm will occur. According to the motor encoder type, the motor single turn pulse number is 4194304 (22bit).

The revolution number and pulse number of the absolute servo system can be read through

communication or DI/DO, the overall pulse number calculation is as follows.

Total pulse number = r (number of revolutions) x 4194304 + pulse number (0~4194303).

If the motor has rotated 10 cycles with 50000 pulse, the total pulse number is as follows according to the above calculation:

The total pulse value = $10 \times 4194304 + 50000$

= 41993040 (pulse)

Method of reading motor absolute position

(1)Read the absolute position with communication.

Generally, you can use parameters which is in the status monitoring communication parameter table in section 9.4 to read the data, and it is recommended to use the "Motor Feedback Pulse Number (before E-Gear ratio)". The following is a brief table.

Communication address	Item	Data length
0x0000	Motor feedback pulse number(after E-Gear ratio) [pulse]	2word
0x0024	Motor feedback pulse number(before E-Gear ratio) [pulse]	2word

(2)Read absolute position by PLC DIO communication

Return the position through the DI/DO handshake communication between the PLC and the drive, you can refer to the descriptions in sections 13.1 and 13.2.

(3) Returning position by parameter setting

By setting parameter PA30 with communication, the encoder status and motor absolute position are updated. If PA30 is set to 1, the drive does not clear the error when reading the position value. If PA30 is set to 2, the drive clears the error at the same time when reading the position value.

The servo motor moves slightly forward and backward to correct its position even it is stopped. To avoid the difference between the reading motor position and actual positions, you can set PA30 to have the motor's actual position updated to the servo drive, and clears the position error at the same time. After encoder status and motor absolute position are updated, PA30 is automatically reset to 0. It means the controller can access the parameter values.

When the encoder status shows "absolute position lost" or "number of revolutions overflow", it means the reading absolute position is invalid. In this case, the coordinate initialization or homing must be performed again.

13.1 Mitsubishi Absolute Position Detection System

This section mainly introduces the use of Mitsubishi PLC with SDP servo to read absolute position by DIO communication.

13.1.1 Signal description

When transmitting absolute position data, the signal of CN1 terminal will be changed.

Signal	Code	CN1 Pin	Function		
ABS Transmission			To activate ABSM and start ABS		
ADS Hansmission	ABSM	User-defined	transmission mode.	DI-x	
mode			Enable ABSR, ABST, ABSB0, ABSB1.		
ABS request	VDCD	17	To turn ABSR ON during accessing ABS	DI-4	
ADS request	ADOK	17	data in ABS transmission mode.	(fixed)	
APS data 0		40	Low hit of 2 hit APS data	DO-3	
ADS Uala U	ADODU	43	LOW DIT OF 2 DIT ADS UATA.	(fixed)	
APS data 1		44	Ligh hit of 2 hit APS data	DO-4	
ADS Uala T	ADODI		High bit of 2 bit ABS data.	(fixed)	
APS ready	ADOT	40	Turn ABST on when ABS data is ready	DO-2	
ADS leady	ADOI	42	in ABS transmission mode.	(fixed)	
ABS origin setting	ABSC	User-defined	Origin data is cleared when ABSC is ON.		
ABC position lost		Lloor dofined	ABSV is ON when absolute position is		
ADS position lost	ADOV	User-denned	lost.	DO-X	

Please refer to the following wiring example for details:

MITSU MELSE	JBISHI G-FX3 U				SEI Shi	RVO AMP ihLin SDE
PL			- 241/		CN1	
	s/s		+24V	COM+	47	
	XO		ABSBO	DO3	43	
	X1		ABSB1	D04	11	
	 		ABST		44	
	×2			DOZ	42	
	0V			DOCOM	40	
	VA		SON	DI1	14	
	14		ABSM		14	Ĺ
	Y5		7105111	DI11	12 _p	Need
	Y6		ABSR	DI4	17	
			GND	511		
	COM2	-		SG	24 • 2	.5 • 50

13.1.2 Start procedure

- (1) Install absolute motor and battery
- (2) Parameter setting

Set PA28 to 1, and set absolute system.

Set PA34 to DDD1, and restart the drive to set the Mitsubishi absolute position detection system.

And then cycling power to activate the parameter setting.

- (3) [AL.2A Absolute encoder error 1] Alarm release
 When the battery is replaced and the power is turned on for the first time, an "AL.2A Absolute Encoder error 1" alarm will occur. You can cycle the power to release the alarm.
- (4) Absolute position loss [AL.2C Absolute encoder error 3] Alarm release When the absolute system is powered on for the first time, an alarm of "AL.2C Absolute Encoder error 3" will occur. Please set PA29 to 1 or perform coordinate initialization to clear the alarm.
- (5) Absolute position data transmission confirmation

Turn on SON, and the absolute position data starts to transmit to the PLC. After normal transmission of ABS data.

- (a) RD (ready) is ON.
- (b) ABST (ready) of PLC is ON.
- (c) If [ABS timeout alarm] occurs, refer to section 10.1 for how to release this alarm.

(6) Homing

Origin setting should be done in the following conditions

- (a) When setting absolute system.
- (b) When changing servo drive.
- (c) When changing servo motor.
- (d) When absolute position loss [AL.2C Absolute encoder error 3] alarm occurs.

When setting an absolute position system, you can establish an absolute coordinate position through the origin setting. If you run the motor without setting the origin, unexpected actions may occur.

13.1.3 Absolute position data transmission protocol

(1) Data transmission procedure

After the power is applied, the PLC reads the current position of the drive when each time SON is turned on.

Focus When ABSM is off, If you turn SON on, the main power circuit will be invalid.

(2) Transmission method

In the absolute position detection system, when SON is turned on, ABSM must be turned on to transmit the current position of the drive to the host controller. If ABSM is turn off, the main power circuit will be off.

(a)Timing diagram

- (1) After the ABS data transmission is completed, RD turns on and ABSM is OFF. When RD is on, ABSM can not be turned on.
- (2) Even if SON is turned on, the main circuit will not be switched on until the ABSM is turned on. When an alarm occurs, ABSM can not be enabled; when a warning occurs, ABSM can be enabled.
- (3) During ABS transmission, if ABSM is OFF, the ABS transmission mode is interrupted and [AL.17 ABS timeout warning] occurs.

During ABS transmission, [AL.17 ABS timeout warning] will also occur when SON OFF, RES ON or EMG OFF.

(4) The output signal functions of ABST, ABSB0 and ABSB1 will change according to the status of ABSM.

CN1 pin	Output signal			
number	ABSM OFF		ABSM ON	
43	WNG Warning/ CMDOK internal position command is	A	ABS Data bit 0	
	completed			
44	TLC torque limit control	A	3S data bit 1	
42	ZSP zero speed is detected.	A	BS data ready	

(5) When the main circuit is on, ABSM is not allowed to turn on. If you want to send data again, you must turn off the SON and wait for the main circuit to turn off for more than 20mSec.

(b)Detailed description of absolute position data transmission timing

After the ABSM is turned on, the ABS servo turn-on timeout will occur if the SON is not turned on within 1 second, but the transmission will not be impacted. If you want to clear the ABS servo on warning, you can just turn the SON on. The detailed timing diagram is as follows:

- (1) The PLC turns on ABSM and SON.
- (2) When entering the ABS transmission mode, ABST (data ready) is ON after the drive calculates the absolute position,
- (3) After PLC confirms that ABST is turned on, ABSR (data request) will be ON.
- (4) After confirming that ABSR is turned on, the servo will output the ABS data (2bit) and turn off ABST.

- (5) If PLC confirms that ABST is closed, it will read ABS data (2bit) and close ABSR.
- (6) The drive turns ABST on to prepare for the next data transfer. Repeat the operation of 3~6 until the transmission of 32-bit data and 6-bit checksum data is completed.
- (7) After the PLC finish receiving the data, it will confirm that the 19th ABST state has been turned on, and then ABSM is turned off. At the end of data transmission, turning off ABSM will interrupt the ABS transmission mode, and [AL.17 ABS timeout warning] will occur.
- (c) Checksum

The checksum is used to detect whether the ABS data has errors. The PLC uses the program to calculate the checksum value of the ABS data and compare it with the checksum value transmitted by the drive.

Calculation: the checksum is calculated by adding up the 2-bit ABS data received each time to obtain a 6-bit checksum value.

(Example) ABS data: -30000 (FFFF8AD0), the calculated checksum value is 22H

00b 00b 01b 11b 10b 10b 00b 10b 11b 11b 11b 11b 11b 11b 11b 11b + 100010b

(3) Transmission error

[AL.17 ABS timeout warning]

In the ABS transmission mode, a time-out warning will occur in the following conditions. Warning will be released automatically when ABSM is turned on. (1) Timeout check when ABSR data requested signal is off.

After the ABST ready signal is on, if the ABSR data requested signal is not turned on within 5 seconds, [AL.17 ABS timeout warning] will occur.

(2) Timeout check when ABSR data requested signal is on.

After the ABST ready signal is off, if the ABSR data requested signal is not turned off within 5 seconds, [AL.17 ABS timeout warning] will occur.

(3) Timeout check after the ABSM transmission mode is completed.

After the ABS data transfer is completed and ABST ready signal is turned on, if the ABSM is not turned off within 5 seconds, [AL.17 ABS timeout warning] will occur.

(4) ABSM signal check in ABS transmission mode

If the ABSM signal is turned off during ABS transmission, [AL.17 ABS timeout warning] will occur.

This example is to turn ABSM OFF before the 19th ABST data ready.

(5) SON signal check in ABS transmission mode

If the SON signal is turned off during the ABS transmission, [AL.17 ABS timeout warning] will occur.

This example is to turn SON off before the 19th ABST data ready.

Checksum error

When the checksum error is detected, the ABS data transmission will be restarted. After the ABSM is closed for 10mSec, the SON will close, and then turn them on after 20mSec at least.

If the absolute position data transmission fails even after 3 retry, the ABS checksum error will occur.

Clear alarm

When an alarm is detected by the servo, SON will be OFF, and ABSM can not be received when there is an alarm. It can only be received when the alarm is cleared. After the alarm is cleared, ABSM can be turned on.

(4) Homing

Focus Please perform the homing when the motor stops, otherwise the origin position may shift.

Move to the target origin position by manual operation (JOG, test positioning). If turning on CR for over 20mSec, the current position is regarded as the ABS origin and the data is stored in the non-volatile memory (the maximum number of writing is 1 million).

13.2 Delta absolute position detection system

This section mainly introduces the use of Delta PLC with SDP servo to read absolute position by DIO communication.

13.2.1 Signal description

When transmitting absolute position data, the signal of CN1 terminal will be changed.

Signal	Code	CN1 Pin	Function	I/O
ABS communication	ABSE	User-defined	When ABSE is on, the ABS mode is activated, it will enable ABSQ, ABSC,	DI-x
ABS signal request	ABSQ	17	Handshake communication check pin during I/O transmission, ABSQ OFF means the controller has issued the requested command; ABSQ ON means the controller has processed the ABSD data.	DI-4 (Fixed)
ABS signal ready	ABSR	43	ABSR OFF means that ABSQ command can be received; ABSR ON means that the data is ready and the ABSD data has been updated.	DO-3 (Fixed)
ABS data content	ABSD	44	The output pin of ABS data, the data is guaranteed to be correct when ABSR is on.	DO-4 (Fixed)
ABS communication error	ABSW	User-defined	The related alarm of the absolute encoder is indicated by this DO output.	DO-x
Origin setting	ABSC	User-defined	When ABSC is turned on, the pulse number in the absolute encoder will be cleared to zero. This input is valid only when ABSE is turned on.	DI-x

Please refer to the following wiring example for details.

DELTA DVP-EH 3 PLC				SEF Shi	RVO AMP ihLin SDE
	1.241/			CN1	
S/S	+24V	_	COM+	47	
xo	ABSR	_	DO2	42	
×1	ABSD		D03	13	
~1	ABSW		005	45	Need
X2			DO1	41 planning	
	Г	-	росом	40	
	ABSE	[10	Need
Y4	ARSO		DI11	12 _F	olanning
Y5	ADSQ	_	DI4	17	
C2	GND		SG	24、2	5 • 50
		,			

13.2.2 Start procedure

- (1) Install absolute motor and battery.
- (2) Parameter setting.

PA28 is set to 1 which is absolute system setting.

Set PA34 to $\Box\Box\Box$, and restart the drive to set the Delta absolute position detection system.

And then restart again to activate the parameter setting.

(3) [AL.2A Absolute encoder error 1] Alarm release.

When the battery is replaced and the power is turned on for the first time, an "AL.2A Absolute Encoder error 1" alarm will occur. You can restart the power to release the alarm.

(4) Absolute position loss [AL.2C Absolute encoder error 3] Alarm release

When the absolute system is powered on for the first time, an alarm of "AL.2C Absolute Encoder error 3" will occur. You can set PA29 to 1 or perform coordinate initialization to clear the alarm.

(5) Homing.

Origin setting should be done in the following conditions

(a) When setting absolute system.

- (b) When changing servo drive.
- (c) When changing servo motor.
- (d) When absolute position loss [AL.2C Absolute encoder error 3] alarm occurs.

When setting an absolute position system, you can establish an absolute coordinate position by the origin setting. If you run the motor without establishing the origin, unexpected actions may occur.

13.2.3 Use DI/DO to initialize absolute coordinates

Absolute coordinate initialization can be performed with PA29 or DI/DO. If in Pr mode, please do the coordinate initialization by homing.

When DI ABSE is ON and DI ABSC is switched from OFF to ON, the coordinate initialization function will be executed. The pulse number of the absolute encoder will be cleared to zero when initiation is completed. Please refer to the figure below for the operation sequence.

Description of operation sequence.

- 1. When the host controller switches the ABSE signal from OFF to ON, it will need to wait for Ts time before the system can proceed to the next step.
- 2. After taking the Ts time, the controller can perform the coordinate reset function, when the ABSC is switched from OFF to ON and after the Tq time, the pulse number of the absolute coordinate will be cleared to zero.

13.2.4 Use parameter settings to initialize absolute coordinates

You can write PA29 to perform absolute coordinate initialization by panel operation or communication command. When PA29 is set to 1, the absolute coordinates will be reset immediately. Please use the homing to initialize the coordinates in Pr mode.

Bit79~Bit64	Bit63 ~ Bit32	Bit31 ~ Bit16	Bit15 ~ Bit0
Check Sum	Encoder pulse number per	Encode revolution	PA31 encoder
	revolution	number	status
	0 ~ 4194304 (22bit Encoder)	-32768 ~ +32767	

Checksum method description:

Check Sum = ((((((WORD_0+0xA700) xor WORD_1)+0x605A) xor WORD_2)+0x30A5) xor WORD_3)+0x5A06

Remind:

- 1. The algorithm has no sign.
- 2. 0xA700, 0x605A, 0x30A5, 0x5A06 are hexadecimal constants.
- 3. WORD_0: encoder status(Bit15 ~ Bit0)

WORD_1: encoder revolution number(Bit31~Bit16)

WORD_2: encoder pulse number(Bit47 ~ Bit32)

WORD_3: encoder pulse number(Bit63 ~ Bit48)

13.2.5 Absolute position data transmission protocol

The description of communication procedure.

- 1. When starting communication, the controller will enable ABSE signal and start DI/DO communication of absolute system. After Ts digital input filter time, DI4, DO2 and DO3 will switch to ABSQ, ABSR, ABSD.
- 2. The controller sets the ABSQ signal to low level, which means that the host controller makes a read request to the drive.
- 3. After the Tq confirmation time, the drive has the data ready and enabled the ABSR signal to notify the host controller for data reading.

- 4. When the host controller detects that the ABSR is at the high level, it will immediately read the data on the ABSD. And then set the ABSQ to the high level to notify the drive for data reading competition.
- 5. After the Tn confirmation time, the drive sets ABSR to the low level, and informs the host controller to prepare communication for the next bit.
- 6. When the controller detects that the ABSR is at a low level, it will request the next bit from the drive.
- 7. If the drive has the data ready, the ABSR signal will be enabled.
- 8. After Tr communication waiting time, if the controller does not read data and pulls up the ABSQ signal, ABSW alarm will occur and the communication will stop.
- 9. After the controller detects the ABSW communication error, it will set ABSE to the low level to make it ready for re-communication.
- 10. Re-enable ABSE signal and restart the communication.
- 11. The controller sets the ABSQ signal to a low level and sends a reading request.
- 12. After the Tq confirmation time, the drive will notify the controller that data can be read.
- 13. When the controller detects that the ABSR is at the high level, it will immediately read the data on the ABSD and set the ABSQ to the high level to notify the drive that the data has been read.
- 14. After the Tn confirmation time, the drive sets ABSR to the low level and informs the host controller that it can prepare for the communication of next bit.
- 15. When the host controller detects that the ABSR is at a low level, it will request the next bit from the drive. Repeat step 11 ~ step 14 to complete data communication of a total of 80 bits from 0 to 79.
13.3 Absolute battery specifications

Cautions for use

Carefully read the following safety cautions. Only use the specified batteries to avoid damage or dangerous conditions.

1. Make sure the installation location is free of vapor, corrosive and inflammable gas.

2. Correctly place the battery into the battery box to avoid short-circuit.

3. Do not short circuit the positive and negative polarity of the battery, and do not install the battery in reverse direction.

1. Do not place the battery in a high-temperature environment over 100°C (212°F) or fires, as this may cause a fire or an explosion.

2. The batteries are non-rechargeable. Do not charge the batteries as this may result in an explosion.

3. Do not directly weld on the surface of the battery.

Battery specifications

Material	Lithium-thionyl chloride/inorganic electrolyte battery
Туре	ER6C
Shihlin model name:	SDH-BAT
Standard voltage	3.6 V
Standard capacity	1800 mAh
Continuous discharge current	100 µA
Dimension(D x H)	14.5 x 51 mm
Weight	15 g
Operating temperature	-55°C~85°C (-67°F~185°F)

Battery life

The figure above is the life curve provided by the battery manufacturer. If the absolute encoder current consumption is 90μ A, the battery life is about 20000hr, which is equivalent to 2.3 years.

14. Appendix

14.1 Accessories

ltem	Name	Model name	L(mm)
	Low/High inertia (50W~750W)	SDH-ENCNL	
Encoder connector	encoder connector		
	Low/Middle/High inertia (850W~3KW)	SDH-ENCNM	
	encoder connector		
	(400V)High inertia (1.8KW~7.5KW)	SDP-ENCNM	
	encoder connector		
	Low/High inertia(50W~750W)	SDH-ENL-2M-L/H	2000±100
	encoder cable 2M		
	Low/High inertia(50W~750W)	SDH-ENL-5M-L/H	5000±100
	encoder cable 5M		
	Low/High inertia(50W~750W) encoder	SDH-ENL-10M-L/H	10000±100
	cable 10M		
	Low/Middle/High inertia(850W~3KW)	SDH-ENM-2M-L/H	2000±100
	encoder cable 2M		
Encoder cable	Low/Middle/High inertia(850W~3KW)	SDH-ENM-5M-L/H	5000±100
	encoder cable 5M		
	Low/Middle/High inertia(850W~3KW)	SDH-ENM-10M-L/H	10000±100
	encoder cable 10M		
	(400V)High inertia (1.8KW~7.5KW)	SDP-ENM-2M-L/H	2000±100
	encoder cable 2M		
	(400V)High inertia (1.8KW~7.5KW)	SDP-ENM-5M-L/H	5000±100
	encoder cable 5M		
	(400V)High inertia (1.8KW~7.5KW)	SDP-ENM-10M-L/H	10000±100
	encoder cable 10M		
	Low/High inertia(50W~750W)	SDA-PWCNL1	
	(without brake)		
	Low/High inertia(50W~750W)(with brake)	SDA-PWCNL2	
Power	Low(1KW~3KW) Middle(1KW/1.5KW)	SDA-PWCNM1	
connector	/High inertia(850W~1.8KW)		
	power connector		
	Middle inertia(2KW/3KW)	SDA-PWCNM2	
	power connector		

	(400V)High inertia (1.8KW)	SDP-PWCNH1	
	power connector		
	(400V)High inertia (2.9KW/4.4KW)	SDP-PWCNH2	
	power connector		
	(400V)High inertia (5.5KW/7.5KW)	SDP-PWCNH3	
	power connector		
	(400V)High inertia (1.8KW~7.5KW)	SDP-BKCNS1	
	brake connector		
	Low/High inertia (50W~750W)	SDA-PWCNL1-2M-L/H	2000±100
	power cable 1(without brake)		
	Low/High inertia (50W~750W)	SDA-PWCNL1-5M-L/H	5000±100
	power cable 2(without brake)		
	Low/High inertia (50W~750W)	SDA-PWCNL1-10M-L/H	10000±100
	power cable 3(without brake)		
	Low/High inertia (50W~750W)	SDA-PWCNL2-2M-L/H	2000±100
	power cable 1(with brake)		
	Low/High inertia (50W~750W)	SDA-PWCNL2-5M-L/H	5000±100
	power cable 2(with brake)		
	Low/High inertia (50W~750W)	SDA-PWCNL2-10M-L/H	10000±100
	power cable 3(with brake)		
	Low(1KW~3KW) Middle(1KW/1.5KW)/	SDA-PWCNM1-2M-L/H	2000±100
	High inertia (850W~1.8KW)		
	power cable 1(without brake)		
	Low(1KW~3KW) Middle(1KW/1.5KW)/	SDA-PWCNM1-5M-L/H	5000±100
	High inertia (850W~1.8KW)		
	power cable 2(without brake)		
	Low(1KW~3KW) Middle(1KW/1.5KW)/	SDA-PWCNM1-10M-L/H	10000±100
	High inertia (850W~1.8KW)		
	power cable 3(without brake)		
	Low(1KW~3KW) Middle(1KW/1.5KW)/	SDA-PWCNM1B-2M-L/H	2000±100
	High inertia (850W~1.8KW)		
Power cable	power cable 1(with brake)		
	Low(1KW~3KW) Middle(1KW/1.5KW)/	SDA-PWCNM1B-5M-L/H	5000±100
	High inertia (850W~1.8KW)		
	power cable 2(with brake)		
	Low(1KW~3KW) Middle(1KW/1.5KW)/	SDA-PWCNM1B-10M-L/H	10000±100
	High inertia (850W~1.8KW)		
	power cable 3(with brake)		

	Middle inertia(2KW/3KW)	SDA-PWCNM2-2M-L/H	2000±100
	power cable 1(without brake)		
	Middle inertia(2KW/3KW)	SDA-PWCNM2-5M-L/H	5000±100
	power cable 2(without brake)		
	Middle inertia(2KW/3KW)	SDA-PWCNM2-10M-L/H	10000±100
	power cable 3(without brake)		
	Middle inertia(2KW/3KW)	SDA-PWCNM2B-2M-L/H	2000±100
	power cable 1(with brake)		
	Middle inertia(2KW/3KW)	SDA-PWCNM2B-5M-L/H	5000±100
	power cable 2(with brake)		
	Middle inertia(2KW/3KW)	SDA-PWCNM2B-10M-L/H	10000±100
	power cable 3(with brake)		
	(400V)High inertia(1.8KW)	SDP-PWCNH1-2M-L/H	2000±100
	power cable 1(without brake)		
	(400V)High inertia(1.8KW)	SDP-PWCNH1-5M-L/H	5000±100
	power cable 2(without brake)		
	(400V)High inertia(1.8KW)	SDP-PWCNH1-10M-L/H	10000±100
	power cable 3(without brake)		
	(400V)High inertia(2.9KW/4.4KW)	SDP-PWCNH2-2M-L/H	2000±100
	power cable 1(without brake)		
	(400V)High inertia(2.9KW/4.4KW)	SDP-PWCNH2-5M-L/H	5000±100
	power cable 2(without brake)		
	(400V)High inertia(2.9KW/4.4KW)	SDP-PWCNH2-10M-L/H	10000±100
	power cable 3(without brake)		
	(400V)High inertia(5.5KW/7.5KW)	SDP-PWCNH3-2M-L/H	2000±100
	power cable 1(without brake)		
	(400V)High inertia(5.5KW/7.5KW)	SDP-PWCNH3-5M-L/H	5000±100
	power cable 2(without brake)		
	(400V)High inertia(5.5KW/7.5KW)	SDP-PWCNH3-10M-L/H	10000±100
	power cable 3(without brake)		
	(400V)High inertia (1.8KW~7.5KW)	SDP-BKCNS1-2M-L/H	2000±100
	brake power cable 1		
	(400V)High inertia (1.8KW~7.5KW)	SDP-BKCNS1-5M-L/H	5000±100
	brake power cable 2		
	(400V)High inertia (1.8KW~7.5KW)	SDP-BKCNS1-10M-L/H	10000±100
	brake power cable 3		
Communication	Drive and PC USB communication cable	SDA-USB3M	3000
cable (CN4)			

	USB to RS-485 ADAPTER	USB01	
Communication	Data transmission cable 1.5meters	SNKCBL1R5GTN2	1500
cable	Data transmission cable 3meters	SNKCBL3GTN2	3000
(CN3)	Data transmission cable 5meters	SNKCBL5GTN2	5000
	Data transmission cable 10meters	SNKCBL10GTN2	10000
I/O connector	I/O connector	SDA-CN1	
(CN1)	I/O cable	SDA-TBL05M	500±10
	I/O cable	SDA-TB1M	1000±10
	I/O cable	SDA-TBL2M	2000±10
	I/O terminal block	SDA-TBL50	
Battery set	Absolute encoder battery set	SDH-BAT-SET	
(CN5)	Absolute encoder battery	SDH-BAT	

Encoder connector

• Part number: SDH-ENL

Low inertia: 50W, 100W, 200W, 400W, 750W High inertia: 200W, 400W, 750W

• Part number: SDH-ENM

Low inertia: 1KW, 1.5KW, 2.0KW, 3.0KW Middle inertia: 1KW, 1.5KW, 2.0KW, 3.0KW High inertia: 850W, 1.3KW, 1.8KW

• Part number: SDP-ENM

(400V)High inertia: 1.8KW, 2.9KW, .4.4KW, 5.5KW, 7.5KW

• Part number: SDP-Endat(Encoder cable of Linear motor (Endat2.2 communication type))

Encoder cable

- Low inertia encoder cable: 50W, 100W, 200W, 400W, 750W
- High inertia encoder cable: 200W, 400W, 750W

- Low inertia encoder cable: 1KW, 1.5KW, 2.0KW, 3.0KW
- Middle inertia encoder cable: 1KW, 1.5KW, 2.0KW, 3.0KW
- High inertia encoder cable: 850W, 1.3KW, 1.8KW

• (400V)High inertia encoder cable: 1.8KW, 2.9KW, 4.4KW, 5.5KW, 7.5KW

Power connector

• Part number: SDA-PWCNL1 (50W, 100W, 200W, 400W, 750W without brake)

SDA-PWCNL2 (50W, 100W, 200W, 400W, 750W with brake)

• Part number: SDA-PWCNM2 (Middle inertia 2KW, 3KW)

• Part number: SDP-PWCNH1(400V High inertia 1.8KW)

• Part number: SDP-PWCNH2(400V High inertia 2.9KW, 4.4KW)

• Part number: SDP-PWCNH3(400V High inertia5.5KW, 7.5KW)

• Part number: SDP-BKCNS1(400V High inertia 1.8KW, 2.9KW, .4.4KW, 5.5KW, 7.5KW)

- Power cable
 - Low inertia power cable: 50W, 100W, 200W, 400W, 750W
 - High inertia power cable: 200W, 400W, 750W

- Low inertia power cable: 1KW, 1.5KW, 2.0KW, 3.0KW
- Middle inertia power cable: 1KW, 1.5KW
- High inertia power cable: 850W, 1.3KW, 1.8KW

• Middle inertia power cable: Middle inertia 2KW, 3KW

• (400V)High inertia power cable: 1.8KW, 2.9KW, .4.4KW, 5.5KW, 7.5KW

✤ USB communication cable for drive and computer

Part number: SDA-USB3M

Full-closed loop(differential A,B,Z type)

Part number: SDP-CN2

I/O cable

Part number: SDA-CN1

STO communication cable

Part number: SDP-CN6

✤ I/O cable

Part number: SDA-TBL05M, SDA-TBL1M, SDA-TBL2M

✤ I/O terminal block

Part number: SDA-TBL50

Absolute encoder accessory:

Absolute encoder battery set	Absolute encoder battery
Part number: SDH-BAT-SET	Part number: SDH-BAT

14.2 Regenerative resistor

	Built-in regenerative resistor specification				
Drive model name	Resistance value (Ω)	Capacity (W)	PA10 Regenerative resistance value	PA11 Regenerative resistance capacity.	
SDP-010A2C	100	20	100	20	
SDP-020A2C	100	20	100	20	
SDP-040A2C	100	20	100	20	
SDP-075A2C	40	40	40	40	
SDP-100A2C	40	40	40	40	
SDP-150A2C	13	100	13	100	
SDP-200A2C	13	100	13	100	
SDP-300A2C	13	100	13	100	

 \star When using external regenerative resistor, the terminal P,D should be open-circuited.

	Spec	Resistor Part Number			
Drive model name	Min allowance resistance value (Ω)	Recommended capacity (W)	PA10 Regenerative resistance value	PA11 Regenerative resistance capacity	
SDP-010A2C	100	300	100	300	ABR-300W100
SDP-020A2C	100	300	100	300	ABR-300W100
SDP-040A2C	100	300	100	300	ABR300W100
SDP-075A2C	40	500	40	500	ABR-500W40
SDP-100A2C	40	500	40	500	ABR-500W40
SDP-150A2C	13	1000	13	1000	ABR-1000W13
SDP-200A2C	13	1000	13	1000	ABR-1000W13
SDP-300A2C	13	1000	13	1000	ABR-1000W13
SDP-200A4C	30	1000	30	1000	ABR-1000W30
SDP-300A4C	30	1000	30	1000	ABR-1000W30
SDP-500A4C	20	2000	20	2000	ABR-2000W20
SDP-700A4C	15	2000	15	2000	ABR-2000W15

★When using external regenerative resistor on 400V drive, connect to P,C terminal.

14.3 Table of communication address

NO	address	NO	address	NO	address	NO	address
PA01	0x0300	PA16	0x031E	PA31	0x033C	PA46	0x035A
PA02	0x0302	PA17	0x0320	PA32	0x033E	PA47	0x035C
PA03	0x0304	PA18	0x0322	PA33	0x0340	PA48	0x035E
PA04	0x0306	PA19	0x0324	PA34	0x0342	PA49	0x0360
PA05	0x0308	PA20	0x0326	PA35	0x0344	PA50	0x0362
PA06	0x030A	PA21	0x0328	PA36	0x0346		
PA07	0x030C	PA22	0x032A	PA37	0x0348		
PA08	0x030E	PA23	0x032C	PA38	0x034A		
PA09	0x0310	PA24	0x032E	PA39	0x034C		
PA10	0x0312	PA25	0x0330	PA40	0x034E		
PA11	0x0314	PA26	0x0332	PA41	0x0350		
PA12	0x0316	PA27	0x0334	PA42	0x0352		
PA13	0x0318	PA28	0x0336	PA43	0x0354		
PA14	0x031A	PA29	0x0338	PA44	0x0356		
PA15	0x031C	PA30	0x033A	PA45	0x0358		
NO	address	NO	address	NO	address	NO	address
NO PB01	address 0x0400	NO PB16	address 0x041E	NO PB31	address 0x043C	NO PB46	address 0x045A
NO PB01 PB02	address 0x0400 0x0402	NO PB16 PB17	address 0x041E 0x0420	NO PB31 PB32	address 0x043C 0x043E	NO PB46 PB47	address 0x045A 0x045C
NO PB01 PB02 PB03	address 0x0400 0x0402 0x0404	NO PB16 PB17 PB18	address 0x041E 0x0420 0x0422	NO PB31 PB32 PB33	address 0x043C 0x043E 0x0440	NO PB46 PB47 PB48	address 0x045A 0x045C 0x045E
NO PB01 PB02 PB03 PB04	address 0x0400 0x0402 0x0404 0x0404	NO PB16 PB17 PB18 PB19	address 0x041E 0x0420 0x0422 0x0424	NO PB31 PB32 PB33 PB34	address 0x043C 0x043E 0x0440 0x0442	NO PB46 PB47 PB48 PB49	address 0x045A 0x045C 0x045E 0x045E
NO PB01 PB02 PB03 PB04 PB05	address 0x0400 0x0402 0x0404 0x0404 0x0406 0x0408	NO PB16 PB17 PB18 PB19 PB20	address 0x041E 0x0420 0x0422 0x0422 0x0424 0x0426	NO PB31 PB32 PB33 PB34 PB35	address 0x043C 0x043E 0x0440 0x0442 0x0444	NO PB46 PB47 PB48 PB49 PB50	address 0x045A 0x045C 0x045E 0x0460 0x0462
NO PB01 PB02 PB03 PB04 PB05 PB06	address 0x0400 0x0402 0x0404 0x0404 0x0406 0x0408 0x040A	NO PB16 PB17 PB18 PB19 PB20 PB21	address 0x041E 0x0420 0x0422 0x0422 0x0424 0x0426 0x0428	NO PB31 PB32 PB33 PB34 PB35 PB36	address 0x043C 0x043E 0x0440 0x0442 0x0444 0x0446	NO PB46 PB47 PB48 PB49 PB50 PB51	address 0x045A 0x045C 0x045E 0x0460 0x0462 0x0464
NO PB01 PB02 PB03 PB04 PB05 PB06 PB07	address 0x0400 0x0402 0x0404 0x0404 0x0406 0x0408 0x040A 0x040A 0x040C	NO PB16 PB17 PB18 PB19 PB20 PB21 PB22	address 0x041E 0x0420 0x0422 0x0424 0x0426 0x0428 0x042A	NO PB31 PB32 PB33 PB34 PB35 PB36 PB37	address0x043C0x043E0x04400x04420x04440x04440x04460x0448	NO PB46 PB47 PB48 PB49 PB50 PB51 PB52	address 0x045A 0x045C 0x045E 0x0460 0x0462 0x0464 0x0466
NO PB01 PB02 PB03 PB04 PB05 PB06 PB07 PB08	address 0x0400 0x0402 0x0404 0x0406 0x0408 0x0408 0x0400 0x0400 0x0408 0x0408 0x0408 0x0408 0x0408 0x0400	NO PB16 PB17 PB18 PB19 PB20 PB21 PB22 PB23	address 0x041E 0x0420 0x0422 0x0424 0x0426 0x0428 0x042A 0x042C	NO PB31 PB32 PB33 PB34 PB35 PB36 PB37 PB38	address0x043C0x043E0x04400x04420x04440x04440x04460x04480x044A	NO PB46 PB47 PB48 PB49 PB50 PB51 PB52 PB53	address 0x045A 0x045C 0x045E 0x045E 0x0460 0x0462 0x0464 0x0466 0x0468
NO PB01 PB02 PB03 PB04 PB05 PB06 PB07 PB08 PB09	address 0x0400 0x0402 0x0404 0x0406 0x0408 0x0408 0x0400 0x0400 0x0400 0x0401 0x0400 0x0400 0x0400 0x0400 0x0400 0x0400 0x0400	NO PB16 PB17 PB18 PB19 PB20 PB21 PB22 PB23 PB24	address 0x041E 0x0420 0x0422 0x0424 0x0426 0x0428 0x0428 0x0420 0x0428 0x0428 0x0428 0x0428 0x0428 0x0428 0x0428 0x0420	NO PB31 PB32 PB33 PB34 PB35 PB36 PB37 PB38 PB39	address0x043C0x043E0x04400x04420x04440x04440x04460x04480x044A0x044C	NO PB46 PB47 PB48 PB49 PB50 PB51 PB52 PB53 PB54	address 0x045A 0x045C 0x045C 0x045C 0x045C 0x045C 0x045C 0x045C 0x045C 0x045C 0x0460 0x0464 0x0466 0x0468 0x046A
NO PB01 PB02 PB03 PB04 PB05 PB06 PB07 PB08 PB09 PB10	address 0x0400 0x0402 0x0404 0x0406 0x0408 0x0408 0x0400 0x0400 0x04010 0x0402 0x0402	NO PB16 PB17 PB18 PB19 PB20 PB21 PB22 PB23 PB24 PB25	address 0x041E 0x0420 0x0422 0x0424 0x0426 0x0428 0x042A 0x042C 0x042E 0x0430	NO PB31 PB32 PB33 PB34 PB35 PB36 PB37 PB38 PB39 PB40	address 0x043C 0x043E 0x0440 0x0440 0x0442 0x0444	NO PB46 PB47 PB48 PB49 PB50 PB51 PB52 PB53 PB54 PB55	address 0x045A 0x045C 0x045E 0x0460 0x0462 0x0464 0x0466 0x0468 0x046A 0x046C
NO PB01 PB02 PB03 PB04 PB05 PB06 PB07 PB08 PB09 PB10 PB11	address 0x0400 0x0402 0x0404 0x0406 0x0408 0x0408 0x0400 0x0400 0x04010 0x0412 0x0414	NO PB16 PB17 PB18 PB19 PB20 PB21 PB22 PB23 PB24 PB25 PB26	address 0x041E 0x0420 0x0422 0x0424 0x0426 0x0428 0x042A 0x042C 0x042E 0x0430 0x0432	NO PB31 PB32 PB33 PB34 PB35 PB36 PB37 PB38 PB39 PB40 PB41	address 0x043C 0x043E 0x0440 0x0440 0x0442 0x0444 0x0444 0x04446 0x04448 0x04448 0x0444 0x04448 0x0444 0x04448 0x0444 0x0445	NO PB46 PB47 PB48 PB49 PB50 PB51 PB52 PB53 PB54 PB55 PB56	address 0x045A 0x045C 0x045E 0x0460 0x0462 0x0464 0x0466 0x0468 0x0468 0x0468 0x0468 0x0468 0x0466 0x0468 0x0468 0x0468 0x0468
NO PB01 PB02 PB03 PB04 PB05 PB06 PB07 PB08 PB09 PB10 PB12	address 0x0400 0x0402 0x0404 0x0406 0x0408 0x0410 0x0412 0x0414 0x0416	NO PB16 PB17 PB18 PB19 PB20 PB20 PB21 PB22 PB23 PB24 PB25 PB26 PB27	address 0x041E 0x0420 0x0422 0x0424 0x0426 0x0428 0x0430 0x0432 0x0434	NO PB31 PB32 PB33 PB34 PB35 PB36 PB37 PB38 PB39 PB40 PB41 PB42	address 0x043C 0x043E 0x0440 0x0440 0x0442 0x0444 0x0444 0x04446 0x04448 0x04448 0x0444 0x04448 0x0444 0x0444 0x0445 0x0445 0x04450 0x0452	NO PB46 PB47 PB48 PB49 PB50 PB51 PB52 PB53 PB54 PB55 PB56 PB57	address 0x045A 0x045C 0x045E 0x0460 0x0462 0x0464 0x0466 0x0466 0x0468 0x0468 0x0468 0x0468 0x0468 0x0468 0x0468 0x0467
NO PB01 PB02 PB03 PB04 PB05 PB06 PB07 PB08 PB09 PB10 PB12 PB13	address 0x0400 0x0402 0x0404 0x0404 0x0406 0x0408 0x0410 0x0412 0x0414 0x0418	NO PB16 PB17 PB18 PB19 PB20 PB20 PB21 PB22 PB23 PB24 PB25 PB26 PB27 PB28	address 0x041E 0x0420 0x0422 0x0424 0x0424 0x0426 0x0428 0x0432 0x0434 0x0434 0x0436	NO PB31 PB32 PB33 PB34 PB35 PB36 PB37 PB38 PB39 PB40 PB41 PB42 PB43	address 0x043C 0x043E 0x0440 0x0442 0x0442 0x0444 0x0444 0x0446 0x0446 0x0448 0x0450 0x0452 0x0454	NO PB46 PB47 PB48 PB49 PB50 PB51 PB52 PB53 PB54 PB55 PB56 PB57 PB58	address 0x045A 0x045C 0x045C 0x045C 0x045C 0x045C 0x045C 0x0460 0x0464 0x0466 0x0468 0x0468 0x0466 0x0466 0x0467 0x0468 0x0460 0x0460 0x0460 0x0462
NO PB01 PB02 PB03 PB04 PB05 PB06 PB07 PB08 PB09 PB10 PB12 PB13 PB14	address 0x0400 0x0402 0x0404 0x0406 0x0408 0x0410 0x0412 0x0414 0x0416 0x0418 0x041A	NO PB16 PB17 PB18 PB19 PB20 PB20 PB21 PB22 PB23 PB24 PB25 PB26 PB27 PB28 PB28 PB29	address 0x041E 0x0420 0x0422 0x0424 0x0426 0x0428 0x0430 0x0431 0x0434 0x0436 0x0438	NO PB31 PB32 PB33 PB34 PB35 PB36 PB37 PB38 PB39 PB40 PB41 PB42 PB43 PB44	address 0x043C 0x043E 0x0440 0x0442 0x0444 0x0444 0x0444 0x0444 0x0444 0x0444 0x0446 0x0446 0x0448 0x0450 0x0452 0x0456	NO PB46 PB47 PB48 PB49 PB50 PB51 PB52 PB53 PB54 PB55 PB56 PB57 PB58 PB59	address 0x045A 0x045C 0x045C 0x045C 0x045C 0x045C 0x0460 0x0462 0x0464 0x0466 0x0466 0x0466 0x0466 0x0466 0x0467 0x0467 0x0467 0x0470 0x0472 0x0474

NO	address	NO	address	NO	address	NO	address
PC01	0x0500	PC26	0x0532	PC51	0x0564	PC76	0x0596
PC02	0x0502	PC27	0x0534	PC52	0x0566	PC77	0x0598
PC03	0x0504	PC28	0x0536	PC53	0x0568	PC78	0x059A
PC04	0x0506	PC29	0x0538	PC54	0x056A	PC79	0x059C
PC05	0x0508	PC30	0x053A	PC55	0x056C	PC80	0x059E
PC06	0x050A	PC31	0x053C	PC56	0x056E	PC81	0x05A0
PC07	0x050C	PC32	0x053E	PC57	0x0570	PC82	0x05A2
PC08	0x050E	PC33	0x0540	PC58	0x0572	PC83	0x05A4
PC09	0x0510	PC34	0x0542	PC59	0x0574	PC84	0x05A6
PC10	0x0512	PC35	0x0544	PC60	0x0576	PC85	0x05A8
PC11	0x0514	PC36	0x0546	PC61	0x0578	PC86	0x05AA
PC12	0x0516	PC37	0x0548	PC62	0x057A	PC87	0x05AC
PC13	0x0518	PC38	0x054A	PC63	0x057C	PC88	0x05AE
PC14	0x051A	PC39	0x054C	PC64	0x057E	PC89	0x05B0
PC15	0x051C	PC40	0x054E	PC65	0x0580	PC90	0x05B2
PC16	0x051E	PC41	0x0550	PC66	0x0582	PC91	0x05B4
PC17	0x0520	PC42	0x0552	PC67	0x0584	PC92	0x05B6
PC18	0x0522	PC43	0x0554	PC68	0x0586	PC93	0x05B8
PC19	0x0524	PC44	0x0556	PC69	0x0588	PC94	0x05BA
PC20	0x0526	PC45	0x0558	PC70	0x058A	PC95	0x05BC
PC21	0x0528	PC46	0x055A	PC71	0x058C	PC96	0x05BE
PC22	0x052A	PC47	0x055C	PC72	0x058E	PC97	0x05C0
PC23	0x052C	PC48	0x055E	PC73	0x0590	PC98	0x05C2
PC24	0x052E	PC49	0x0560	PC74	0x0592	PC99	0x05C4
PC25	0x0530	PC50	0x0562	PC75	0x0594		
NO	address	NO	address	NO	address	NO	address
PD01	0x0600	PD11	0x0614	PD21	0x0628	PD31	0x063C
PD02	0x0602	PD12	0x0616	PD22	0x062A	PD32	0x063E
PD03	0x0604	PD13	0x0618	PD23	0x062C	PD33	0x0640
PD04	0x0606	PD14	0x061A	PD24	0x062E	PD34	0x0642
PD05	0x0608	PD15	0x061C	PD25	0x0630	PD35	0x0644
PD06	0x060A	PD16	0x061E	PD26	0x0632	PD36	0x0646
PD07	0x060C	PD17	0x0620	PD27	0x0634	PD37	0x0648
PD08	0x060E	PD18	0x0622	PD28	0x0636	PD38	0x064A
PD09	0x0610	PD19	0x0624	PD29	0x0638	PD39	0x064C
PD10	0x0612	PD20	0x0626	PD30	0x063A	PD40	0x064E

NO	address	NO	address	NO	address
PE01	0x0700	PE34	0x0742	PE67	0x0784
PE02	0x0702	PE35	0x0744	PE68	0x0786
PE03	0x0704	PE36	0x0746	PE69	0x0788
PE04	0x0706	PE37	0x0748	PE70	0x078A
PE05	0x0708	PE38	0x074A	PE71	0x078C
PE06	0x070A	PE39	0x074C	PE72	0x078E
PE07	0x070C	PE40	0x074E	PE73	0x0790
PE08	0x070E	PE41	0x0750	PE74	0x0792
PE09	0x0710	PE42	0x0752	PE75	0x0794
PE10	0x0712	PE43	0x0754	PE76	0x0796
PE11	0x0714	PE44	0x0756	PE77	0x0798
PE12	0x0716	PE45	0x0758	PE78	0x079A
PE13	0x0718	PE46	0x075A	PE79	0x079C
PE14	0x071A	PE47	0x075C	PE80	0x079E
PE15	0x071C	PE48	0x075E	PE81	0x07A0
PE16	0x071E	PE49	0x0760	PE82	0x07A2
PE17	0x0720	PE50	0x0762	PE83	0x07A4
PE18	0x0722	PE51	0x0764	PE84	0x07A6
PE19	0x0724	PE52	0x0766	PE85	0x07A8
PE20	0x0726	PE53	0x0768	PE86	0x07AA
PE21	0x0728	PE54	0x076A	PE87	0x07AC
PE22	0x072A	PE55	0x076C	PE88	0x07AE
PE23	0x072C	PE56	0x076E	PE89	0x07B0
PE24	0x072E	PE57	0x0770	PE90	0x07B2
PE25	0x0730	PE58	0x0772	PE91	0x07B4
PE26	0x0732	PE59	0x0774	PE92	0x07B6
PE27	0x0734	PE60	0x0776	PE93	0x07B8
PE28	0x0736	PE61	0x0778	PE94	0x07BA
PE29	0x0738	PE62	0x077A	PE95	0x07BC
PE30	0x073A	PE63	0x077C	PE96	0x07BE
PE31	0x073C	PE64	0x077E	PE97	0x07C0
PE32	0x073E	PE65	0x0780	PE98	0x07C2
PE33	0x0740	PE66	0x0782	PE99	0x07C4

NO	address	NO	address	NO	address
PF01	0x0800	PF34	0x0842	PF67	0x0884
PF02	0x0802	PF35	0x0844	PF68	0x0886
PF03	0x0804	PF36	0x0846	PF69	0x0888
PF04	0x0806	PF37	0x0848	PF70	0x088A
PF05	0x0808	PF38	0x084A	PF71	0x088C
PF06	0x080A	PF39	0x084C	PF72	0x088E
PF07	0x080C	PF40	0x084E	PF73	0x0890
PF08	0x080E	PF41	0x0850	PF74	0x0892
PF09	0x0810	PF42	0x0852	PF75	0x0894
PF10	0x0812	PF43	0x0854	PF76	0x0896
PF11	0x0814	PF44	0x0856	PF77	0x0898
PF12	0x0816	PF45	0x0858	PF78	0x089A
PF13	0x0818	PF46	0x085A	PF79	0x089C
PF14	0x081A	PF47	0x085C	PF80	0x089E
PF15	0x081C	PF48	0x085E	PF81	0x08A0
PF16	0x081E	PF49	0x0860	PF82	0x08A2
PF17	0x0820	PF50	0x0862	PF83	0x08A4
PF18	0x0822	PF51	0x0864	PF84	0x08A6
PF19	0x0824	PF52	0x0866	PF85	0x08A8
PF20	0x0826	PF53	0x0868	PF86	0x08AA
PF21	0x0828	PF54	0x086A	PF87	0x08AC
PF22	0x082A	PF55	0x086C	PF88	0x08AE
PF23	0x082C	PF56	0x086E	PF89	0x08B0
PF24	0x082E	PF57	0x0870	PF90	0x08B2
PF25	0x0830	PF58	0x0872	PF91	0x08B4
PF26	0x0832	PF59	0x0874	PF92	0x08B6
PF27	0x0834	PF60	0x0876	PF93	0x08B8
PF28	0x0836	PF61	0x0878	PF94	0x08BA
PF29	0x0838	PF62	0x087A	PF95	0x08BC
PF30	0x083A	PF63	0x087C	PF96	0x08BE
PF31	0x083C	PF64	0x087E	PF97	0x08C0
PF32	0x083E	PF65	0x0880	PF98	0x08C2
PF33	0x0840	PF66	0x0882	PF99	0x08C4

NO	address	NO	address	NO	address
PL01	0x0E00	PL21	0x0E28	PL41	0x0E50
PL02	0x0E02	PL22	0x0E2A	PL42	0x0E52
PL03	0x0E04	PL23	0x0E2C	PL43	0x0E54
PL04	0x0E06	PL24	0x0E2E	PL44	0x0E56
PL05	0x0E08	PL25	0x0E30	PL45	0x0E58
PL06	0x0E0A	PL26	0x0E32	PL46	0x0E5A
PL07	0x0E0C	PL27	0x0E34	PL47	0x0E5C
PL0E	0x0E0E	PL28	0x0E36	PL48	0x0E5E
PL09	0x0E10	PL29	0x0E38	PL49	0x0E60
PL10	0x0E12	PL30	0x0E3A	PL50	0x0E62
PL11	0x0E14	PL31	0x0E3C	PL51	0x0E64
PL12	0x0E16	PL32	0x0E3E		
PL13	0x0E18	PL33	0x0E40		
PL14	0x0E1A	PL34	0x0E42		
PL15	0x0E1C	PL35	0x0E44		
PL16	0x0E1E	PL36	0x0E46		
PL17	0x0E20	PL37	0x0E48		
PL18	0x0E22	PL38	0x0E4A		
PL19	0x0E24	PL39	0x0E4C		
PL20	0x0E26	PL40	0x0E4E		

14.4 Compliance with global standards

14.4.1. Safety instructions

Before installing this equipment, please read this manual carefully to ensure use it correctly. This section explains the safety regulations for users and equipment operation.

To avoid the possibility of electric shock, please turn off the power for more than 20 minutes until the charging indicator is off and the voltage test is confirmed, and then It can be wired or inspected, otherwise it may cause electric shock.

14.4.2. Professional technicians.

Only the professional technician who has received professional training can install the SDP servo drive.

14.4.3. Compliance with standards

(1) Safety regulations

SDP general type servo drive complies with IEC/EN61800-5-1 standards.

(2) Compliance with EU standards

SDP general type servo complies with EMC directive(2014/30/EU) and low voltage directive(2014/35/EU).

(3) Compliance with USA/Canada regulations

This servo drive design complies with UL 508C and CSA C22.2 No.274-13

(a) Installation

The minimum size of the distribution box should be 200% the size of the SDP servo drive. For ventilation of the fan and to keep the ambient temperature below 55°C, only copper wires can be used for wiring. The servo drive should be installed in a metal distribution box.

(b) Overload protection feature

The SDP servo drive has overload protection function. (It is specified based on 120% of the rated current of the servo drive (full load current).)

(c) Motor overheat protection

There is no temperature sensor inside the motor, and the SDP series do not have overheat protection.

(d) Capacitor discharge

After the power is turned off, do not touch the servo and its terminals immediately. The capacitor discharge takes 20 minutes.

(e) About wiring protection

When installing equipment in the United States, branch circuit protection is based on national electrical regulations and local regulations. When installing equipment in Canada, branch circuit protection is based on the Canadian Electrical regulations and provincial regulations.

14.4.4. Correct use

The use of equipment must comply with the specifications (voltage, temperature, etc. , please refer to section 12.1 for details).

(1) Power cable

Refer to section 3.1.6 for detailed power cable selection instruction.

Note 1: when connecting to the terminal block, use the screws included with the terminal block.

Note 2: the letters in the table indicate crimping tools, please refer to the recommended crimping terminal table for crimping terminals and suitable tools.

Note 3: the cable AWG selection depends on the specifications of the servo motor.

(2) Fixed terminal block: crimp terminals must comply with UL specifications, and insulating sleeves must be used to prevent direct contact.

Drive	Recommended torque(Nt-m)					
	R, S, T	U, V, W	+, -, P, P1, D, C, N	PE		
SDP-200A4C	1.53	1.53	1.53			
SDP-300A4C				1.4		
SDP-500A4C						
SDP-700A4C						

(3) Example of non-fuse circuit breaker selection

Drive	UL certified current-limiting circuit breaker	Example	
SDP-010A2C	240 \/ 5 A	NF50-SVFU 5A	
SDP-020A2C	240 V, 3 A		
SDP-040A2C	240 V, 10 A	NF50-SVFU 3P 10A	
SDP-075A2C	240 \/ 45 A		
SDP-100A2C	240 V, 13 A	NF30-3VFU 3P 15A	
SDP-150A2C			
SDP-200A2C	240 V, 30 A	NF50-SVFU 3P 30A	
SDP-300A2C			
SDP-200A4C	480 V, 20 A	NF125-SVU 3P 20A	
SDP-300A4C	480 V, 30 A	NF125-SVU 3P 30A	
SDP-500A4C	480 V, 60 A	NF125-SVU 3P 60A	
SDP-700A4C	480 V, 70 A	NF125-SVU 3P 70A	

14.4.5. Basic inspection and maintenance

14.4.5.1.Basic inspection

It is recommended that the user do the following inspection regularly. Please carefully check whether the servo drive is powered off and the charging indicator is off before performing the following inspection:

- Check whether the screws of the terminal block, drive installation part, servo motor and mechanism connection are loose, if yes, please tighten it.
- The servo should not be placed where harmful gas exists.
- Avoid placing conductive objects next to the drive and the drive wiring.
- Servo motor wiring should avoid excessively long bare area and avoid use damaged or broken wire.
- Insulation should be done at the wiring terminal.
- Check whether the external voltage is correctly with AC220V.
- Check whether the operation switch is OFF.
- Check whether power wiring and encoder wiring is correct.

14.4.5.2.Maintenance

Do not disassemble the servo drive by yourself. Please follow below instruction for regular maintenance:

- Wipe the servo drive and servo motor regularly to avoid the dust.
- Do not operate for a long time in harsh environment.
- The vents of the servo drive should be kept clean to avoid dust accumulation.

14.4.5.3 Parts service life

The lifetime of the parts may be changed due to the user's operating environment. When an abnormality occurs, it needs to be replaced immediately. Please contact the distributor for replacing parts. The service life of the parts is as follows:

Component name	Approximate lifetime	Description	
Relay	100,000 times	The power capacity will impact its life, the accumulative number of switching is about 100,000 times.	
Cooling fan	10,000~30,000 hours (2-3 years)	Continuous operation or placing the servo drive in a place with harmful gas will shorten the service life of the fan. Normally the lifetime is about 2 to 3 years. However, if the fan runs with abnormal noise, it needs to be replaced.	
Rectified capacitor	10 years	If the rectified capacitor is affected by the ripple current, its features will be decreased. The service life of the capacitor is affected by the surrounding temperature and use conditions. If the servo is operated in a general environment with air conditioning, the service life is about 10 years.	

14.5 Manual version and revision history

Manual version: V1.01

Release month: April, 2023